Advertisement

Hydrobiologia

, Volume 844, Issue 1, pp 67–82 | Cite as

Modeling the life history of sessile rotifers: larval substratum selection through reproduction

  • Andrea N. Young
  • Rick Hochberg
  • Elizabeth J. Walsh
  • Robert L. WallaceEmail author
ROTIFERA XV

Abstract

Although the theoretical underpinnings of habitat selection by marine invertebrate larvae have been well studied, this theory has been neglected for freshwater sessile rotifers. To study how substratum selection affects larval fitness, we developed a dynamic model to examine influences of three elements of larval life (survival, substratum acceptance, substratum encounter probability) and substratum-dependent reproductive success in adults. Monte Carlo simulation models were run using an initial cohort of larvae. Our Basic Model assessed fitness as simply settling on a substratum using only the larval elements and revealed statistically greatest fitness when swimming speed decreased with age and when substratum preference was constant or exhibited mid-age competence. The Reproductive Model assessed fitness (mean number of offspring adult−1) as a function of substratum. We compared reproduction on neutral substrata to substrata where quality varied and separately as a function of adult population density: coloniality (synergism) versus competition. The model showed fitness was statistically greatest when larval swimming speed decreased with age and when coloniality increased reproduction. We also explored conditions where populations of planktonic adults could survive. The model is applicable to sessile organisms and may be modified to examine other life history activities including selection of mates, prey, or territory.

Keywords

Behavior Dynamic modeling Gnesiotrocha Planktonic Substratum-dependent reproduction Rotifera 

Notes

Acknowledgements

We thank Diego Fontaneto, Holger Herlyn, Mark Kainz, Menuma Khan, McKenzie Lamb, George Wittler, and three anonymous reviewers for their comments that improved this manuscript. This research was supported in part by funds for faculty development (Ripon College), from the National Science Foundation: DEB 1257068 (EJW), 1257110 (RH), and 1257116 (RLW), and by Grant 5G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.

Supplementary material

10750_2018_3802_MOESM1_ESM.pdf (618 kb)
Supplementary material 1 (PDF 621 kb)

References

  1. Allen, J. D. & B. Pernet, 2007. Intermediate modes of larval development: bridging the gap between planktotrophy and lecithotrophy. Evolution and Development 9: 643–653.PubMedGoogle Scholar
  2. Armstrong, R. A., 2014. When to use the Bonferroni correction. Ophthalmic Physiol Opt 34: 502–508.PubMedGoogle Scholar
  3. Beach, N. W., 1960. A study of the planktonic rotifers of the Ocqueoc River system, Presque Isle County, Michigan. Ecological Monographs 30: 339–358.Google Scholar
  4. Bērziņš, B., 1951. On the Collothecacean Rotatoria with special reference to the species found in the Aneboda district, Sweden. Arkiv för Zoologi 1: 565–592.Google Scholar
  5. Burgess, S. C., S. P. Hart & D. J. Marshall, 2009. Pre-settlement behavior in larval bryozoans: the roles of larval age and size. Biological Bulletin 216: 344–354.PubMedGoogle Scholar
  6. Burgess, S. C., E. A. Treml & D. J. Marshall, 2012. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93: 1378–1387.PubMedGoogle Scholar
  7. Butler, N. M., 1983. Substrate selection and larval settlement by Cupelopagis vorax. Hydrobiologia 104: 317–323.Google Scholar
  8. Chia, F. S. & M. E. Rice (eds), 1978. Settlement and Metamorphosis of Marine Invertebrate Larvae. Elsevier, New York.Google Scholar
  9. Chia, F.-S., G. Gibson & P.-Y. Qian, 1996. Poecilogony as a reproductive strategy of marine invertebrates. Oceanologia Acta 19: 203–208. http://archimer.ifremer.fr/doc/00094/20178.
  10. Crisp, D. J. & P. S. Meadows, 1963. Adsorbed layers: the stimulus to settlement in barnacles. Proceedings of the Royal Society of London B 158: 364–387.Google Scholar
  11. Daly, E. A., R. D. Brodeur & L. A. Weitkamp, 2009. Ontogenetic shifts in diets of juvenile and subadult Coho and Chinook salmon in coastal marine waters: important for marine survival? Transactions of the American Fisheries Society 138: 1420–1438.Google Scholar
  12. Decho, A. W. & J. W. Fleeger, 1988. Ontogenetic feeding shifts in the meiobenthic harpacticoid copepod Nitocra lacustris. Marine Biology 97: 191–197.Google Scholar
  13. Delbecque, E. J. P. & R. E. M. Suykerbuyk, 1988. A comparison of the periphyton of Nuphar lutea and Nymphaea alba. Spatial and temporal changes in the occurrence of sessile microfauna. Archiv für Hydrobiologie 112: 541–566.Google Scholar
  14. Dera, G., G. J. Eble, P. Neige & B. David, 2008. The flourishing diversity of models in theoretical morphology: from current practices to future macroevolutionary and bioenvironmental challenges. Paleobiology 34: 301–317.Google Scholar
  15. Despland, E. & S. Hamzeh, 2004. Ontogenetic changes in social behaviour in the forest tent caterpillar, Malacosoma disstria. Behavioral Ecology and Sociobiology 56: 177–184.Google Scholar
  16. de Roos, A. M. & L. Persson, 2013. Population and Community Ecology of Ontogenetic Development. Princeton University Press, Princeton.Google Scholar
  17. Diéguez, M. C. & J. J. Gilbert, 2011. Daphnia–rotifer interactions in Patagonian communities. Hydrobiologia 662: 189–195.Google Scholar
  18. Doyle, R. W., 1975. Settlement of planktonic larvae: a theory of habitat selection in varying environments. The American Naturalist 109: 113–126.Google Scholar
  19. Dražina, T., A. Korša, M. Špoljar, I. Maguire & G. I. V. Klobučar, 2018. Epifauna of native and alien freshwater crayfish species (Crustacea:Decapoda): a host-specific community? Freshwater Science 37: (in press).  https://doi.org/10.1086/698764.Google Scholar
  20. Edmondson, W. T., 1944. Ecological studies of sessile Rotatoria, Part I. Factors affecting distribution. Ecological Monographs 14: 32–66.Google Scholar
  21. Edmondson, W. T., 1945. Ecological studies of sessile Rotatoria, Part II. Dynamics of populations and social structure. Ecological Monographs 15: 141–172.Google Scholar
  22. Edmondson, W. T., 1949. A formula key to the Rotatorian genus Ptygura. Transactions of the American Microscopical Society 68: 127–135.Google Scholar
  23. Fontaneto, D. & R. Ambrosini, 2010. Spatial niche partitioning in epibiont rotifers on the waterlouse Asellus aquaticus. Limnology and Oceanography 55: 1327–1337.Google Scholar
  24. Fontaneto, D., G. Melone & R. L. Wallace, 2003. Morphology of Floscularia ringens (Rotifera, Monogononta) from egg to adult. Invertebrate Biology 122: 231–240.Google Scholar
  25. Fussmann, G. F., S. P. Ellner, K. W. Shertzer & N. G. Hairston Jr., 2000. Crossing the Hopf bifurcation in a live predator-prey system. Science 290: 1358–1360.PubMedGoogle Scholar
  26. Gilbert, J. J., (this volume). Attachment behavior in the rotifer Brachionus rubens: induction by Asplanchna and effect on sexual reproduction. Hydrobiologia.  https://doi.org/10.1007/s10750-018-3805-7.
  27. Green, J., 2003. Associations of planktonic and periphytic rotifers in a tropical swamp, the Okavango Delta, Southern Africa. Hydrobiologia 490: 197–209.Google Scholar
  28. Hadfield, M. G., 1998. The D P Wilson Lecture. Research on settlement and metamorphosis of marine invertebrate larvae: past, present and future. Biofouling 12: 9–29.Google Scholar
  29. Hentschel, B. T., 1998. Intraspecific variations in δ 13C indicate ontogenetic diet changes in deposit-feeding polychaetes. Ecology 79: 1357–1370.Google Scholar
  30. Hochberg, A., 2014. Comparative myoanatomy of collothecid rotifers (Rotifera: Gnesiotrocha: Collothecaceae) with details on larval metamorphosis and development of the infundibulum in species of Stephanoceros. MS thesis. University of Massachusetts at Lowell, Lowell, MA.Google Scholar
  31. Hochberg, R., H. Yang, E. J. Walsh & R. L. Wallace, (this volume). Systematic distribution of birefringent bodies in Rotifera and first evidence of their ultrastructure in Acyclus inquietus (Gnesiotrocha: Collothecaceae). Hydrobiologia.Google Scholar
  32. Hodin, J., M. C. Ferner, G. Ng, C. J. Lowe & B. Gaylord, 2015. Rethinking competence in marine life cycles: ontogenetic changes in the settlement response of sand dollar larvae exposed to turbulence. Royal Society Open Science 2: 150114.PubMedPubMedCentralGoogle Scholar
  33. Iyer, N. & T. R. Rao, 1995. Epizoic mode of life in Brachionus rubens Ehrenberg as a deterrent against predation by Asplanchna intermedia Hudson. Hydrobiologia 313(314): 377–380.Google Scholar
  34. Jersabek, C. D. & M. F. Leitner, 2015. The Rotifer World Catalog. World Wide Web electronic publication. http://www.rotifera.hausdernatur.at/. Accessed 11 July 2018.
  35. Kempf, S. C., 1981. Long-lived larvae of the gastropod Aplysia juliana: do they disperse and metamorphose or just slowly fade away? Marine Ecology Progress Series 6: 61–65.Google Scholar
  36. Kinlan, B. P., S. D. Gaines & S. E. Lester, 2005. Propagule dispersal and the scales of marine community process. Diversity and Distributions 11: 139–148.Google Scholar
  37. Koehl, M. A. R. & M. G. Hadfield, 2010. Hydrodynamics of larval settlement from a larva’s point of view. Integrative and Comparative Biology 50: 539–551.PubMedGoogle Scholar
  38. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. 2 volumes. Gebrüder Borntraeger, Stuttgart.Google Scholar
  39. Kovach-Orr, C. & G. F. Fussmann, 2013. Evolutionary and plastic rescue in multitrophic model communities. Philosophical Transactions of the Royal Society B 368(1610): 20120084.Google Scholar
  40. Kuczyńska-Kippen, N., 2003. The distribution of rotifers (Rotifera) within a single Myriophyllum bed. Hydrobiologia 506–509: 327–331.Google Scholar
  41. Kuczyńska-Kippen, N., 2005. On body size and habitat selection in rotifers in a macrophye-dominated lake Budzyńskie, Poland. Aquatic Ecology 39: 447–454.Google Scholar
  42. Kuczyńska-Kippen, N. M. & B. Nagengast, 2006. The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203–212.Google Scholar
  43. Kutikova, L. A., 1995. Larval metamorphosis in sessile rotifers. Hydrobiologia 313(314): 133–138.Google Scholar
  44. Levin, L. A. & T. S. Bridges, 1995. Pattern and diversity and and reproduction in development. In McEdward, L. R. (ed.), Ecology of Marine Invertebrate Larvae., Marine Science Series CRC Press Inc, Boca Raton: 1–48.Google Scholar
  45. Lucena-Moya, P. & I. C. Duggan, 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquatic Ecology 45: 279–287.Google Scholar
  46. Marechal, J. P., C. Hellio, M. Sebire & A. S. Clare, 2004. Settlement behaviour of marine invertebrate larvae measured by EthoVision 3.0. Biofouling 20: 211–217.PubMedGoogle Scholar
  47. Marshall, D. J., T. F. Bolton & M. J. Keough, 2003. Offspring size affects the post-metamorphic performance of a colonial marine invertebrate. Ecology 84: 3131–3137.Google Scholar
  48. Marshall, D. J. & M. J. Keough, 2003. Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. Marine Ecology Progess Series 255: 145–153.Google Scholar
  49. May, L., 1989. Epizoic and parasitic rotifers. Hydrobiologia 186(187): 59–67.Google Scholar
  50. McEdward, L. R. (ed.), 1995. Ecology of Marine Invertebrate Larvae. CRC Press Inc, Boca Raton.Google Scholar
  51. Meksuwan, P., P. Pholpunthin & H. H. Segers, 2015. Molecular phylogeny confirms Conochilidae as ingroup of Flosculariidae (Rotifera, Gnesiotrocha). Zoologica Scripta 44: 562–573.Google Scholar
  52. Meksuwan, P., P. Pholpunthin, E. J. Walsh, H. Segers & R. L. Wallace, 2014. Nestedness in sessile and periphytic rotifer communities: a meta-analysis. International Review of Hydrobiology 99: 48–57.Google Scholar
  53. Mooney, D. D. & R. J. Swift, 1999. A course in Mathematical Modeling, Vol. 13. Mathematical Association of America, Washington, DC.Google Scholar
  54. Murray, J., 1913. VI.—South American Rotifera. Journal of the Royal Microscopical Society 33(3): 229–246.Google Scholar
  55. Nilsen, H. C. & R. W. Larimore, 1973. Establishment of invertebrate communities on log substrates in the Kaskaskia River, Illinois. Ecology 54(2): 366–374.Google Scholar
  56. Olson, R. R., 1985. The consequences of short-distance larval dispersal in a sessile marine invertebrate. Ecology 66(1): 30–39.Google Scholar
  57. Pannell, D. J., 1997. Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agricultural Economics 16: 139–152.Google Scholar
  58. Pawlik, J. R., 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanography and Marine Biology: An Annual Review 30: 273–335.Google Scholar
  59. Pechenik, J. A., 1980. Growth and energy balance during the larval lives of three prosobranch gastropods. Journal of Experimental Marine Biology and Ecology 44: 1–28.Google Scholar
  60. Pechenik, J. A., 1999. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Marine Ecology Progress Series 177: 269–297.Google Scholar
  61. Pechenik, J. A., 2006. Larval experience and latent effects—metamorphosis is not a new beginning. Integrative and Comparative Biology 46: 323–333.PubMedGoogle Scholar
  62. Richards, R. A., 1992. Habitat selection and predator avoidance: ontogenetic shifts in habitat use by the Jonah crab Cancer borealis (Stimpson). Journal of Experimental Marine Biology and Ecology 156: 187–197.Google Scholar
  63. Pineda, J. & H. Caswell, 1997. Dependence of settlement rate on suitable substrate area. Marine Biology 129: 541–548.Google Scholar
  64. Roughgarden, J., Y. Iwasa & C. Baxter, 1985. Demographic theory for an open marine population with space-limited recruitment. Ecology 66: 54–67.Google Scholar
  65. Rumrill, S. S., 1990. Natural mortality of marine invertebrate larvae. Ophelia 32: 163–198.Google Scholar
  66. Sarma, S. S. S., M. A. Jiménez-Santos, S. Nandini & R. L. Wallace, 2017. Demography of the sessile rotifers, Limnias ceratophylli and Limnias melicerta (Rotifera: Gnesiotrocha), in relation to food (Chlorella vulgaris Beijerinck, 1890) density. Hydrobiologia 796: 181–189.Google Scholar
  67. Schriever, T. A. & D. D. Williams, 2013. Ontogenetic and individual diet variation in amphibian larvae across an environmental gradient. Freshwater Biology 58: 223–236.Google Scholar
  68. Segers, H., W. H. De Smet, C. Fischer, D. Fontaneto, E. Michaloudi, R. L. Wallace & C. D. Jersabek, 2012. Towards a list of available names in zoology, partim phylum Rotifera. Zootaxa 3179: 61–68.Google Scholar
  69. Segers, H., P. Meksuwan & L.-O. Sanoamuang, 2010. New records of sessile rotifers (Phylum Rotifera: Flosculariacea, Collothecacea) from Southeast Asia. Belgian Journal of Zoology 140: 235–240.Google Scholar
  70. Sendacz, S., S. Caleffi & J. Santos-Soares, 2006. Zooplankton biomass of reservoirs in different trophic conditions in the state of São Paulo, Brazil. Brazilian Journal of Biology 66: 337–350.Google Scholar
  71. Serra, M., H. A. Smith, J. S. Weitz & T. W. Snell, 2011. Analysing threshold effects in the sexual dynamics of cyclically parthenogenetic rotifer populations. Hydrobiologia 662: 121–130.Google Scholar
  72. Shanks, A. L., 2009. Pelagic larval duration and dispersal distance revisited. The Biological Bulletin 216: 373–385.PubMedGoogle Scholar
  73. Shertzer, K. W., S. P. Ellner, G. F. Fussmann & N. G. Hairston Jr., 2002. Predator–prey cycles in an aquatic microcosm: testing hypotheses of mechanisms. Journal of Animal Ecology 71: 802–815.Google Scholar
  74. Strathmann, R. R., 1985. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annual Review of Ecology and Systematics 16: 339–361.Google Scholar
  75. Streiner, D. L. & G. R. Norman, 2011. Correction for multiple testing: is there a resolution? Chest 140: 16–18.PubMedGoogle Scholar
  76. Tendler, A., A. Mayo & U. Alon, 2015. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells. BMC Systems Biology 9: 12.PubMedPubMedCentralGoogle Scholar
  77. Thiyagarajan, V., 2010. A review on the role of chemical cues in habitat selection by barnacles: new insights from larval proteomics. Journal of Experimental Marine Biology and Ecology 392: 22–36.Google Scholar
  78. Toonen, R. J. & A. J. Tyre, 2007. If larvae were smart: a simple model for optimal settlement behavior of competent larvae. Marine Ecology Progress Series 349: 3–61.Google Scholar
  79. Vadstein, O., L. M. Olsen & T. Andersen, 2012. Prey-predator dynamics in rotifers: density-dependent consequences of spatial heterogeneity due to surface attachment. Ecology 93: 1795–1801.PubMedGoogle Scholar
  80. van der Hammen, T., M. Montserrat, M. W. Sabelis, A. M. de Roos & A. Janssen, 2012. Whether ideal free or not, predatory mites distribute so as to maximize reproduction. Oecologia 169: 95–104.PubMedGoogle Scholar
  81. Vance, R. R., 1973. More on reproductive strategies in marine benthic invertebrates. The American Naturalist 107: 353–361.Google Scholar
  82. Wallace, R. L., 1975. Larval behavior of the sessile rotifer Ptygura beauchampi (Edmondson). Verhandlungen Internationale Vereinigung Limnologie 19: 2811–2815.Google Scholar
  83. Wallace, R. L., 1977a. Distribution of sessile rotifers in an acid bog pond. Archiv für Hydrobiologie 79: 478–505.Google Scholar
  84. Wallace, R. L., 1977b. Substrate discrimination by larvae of the sessile rotifer Ptygura beauchampi Edmondson. Freshwater Biology 7: 301–309.Google Scholar
  85. Wallace, R. L., 1978. Substrate selection by larvae of the sessile rotifer Ptygura beauchampi. Ecology 59: 221–227.Google Scholar
  86. Wallace, R. L., 1980. Ecology of sessile rotifers. Hydrobiologia 73: 181–193.Google Scholar
  87. Wallace, R. L., 1987. Coloniality in the phylum Rotifera. Hydrobiologia 147: 141–155.Google Scholar
  88. Wallace, R. L., 1993. Presence of anisotropic (birefringent) crystalline structures in embryonic and juvenile monogonont rotifers. Hydrobiologia 255(256): 71–76.Google Scholar
  89. Wallace, R. L. & W. T. Edmondson, 1986. Mechanism and adaptive significance of substrate selection by a sessile rotifer. Ecology 67: 314–323.Google Scholar
  90. Wallace, R. L., J. J. Cipro & R. W. Grubbs, 1998. Relative investment in offspring by sessile Rotifera. Hydrobiologia 387(388): 311–316.Google Scholar
  91. Wallace, R. L., A. Korbacheh & E. J. Walsh, 2018. Key to the currently recognized species of Limnias Schrank, 1803 (Rotifera, Monogononta, Gnesiotrocha, Flosculariidae). Zootaxa 4442: 307–318.PubMedGoogle Scholar
  92. Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera. Volume 1: Biology, Ecology and Systematics, 2nd ed. Backhuys Publishers, Leiden.Google Scholar
  93. Wallace, R. L., T. W. Snell & H. A. Smith, 2015. Phylum Rotifera. In Thorp, J. H. & D. C. Rogers (eds), Thorp and Covich’s Freshwater Invertebrates, Vol. I., Ecology and General Biology Elsevier, Waltham, MA: 225–271.Google Scholar
  94. Walsh, E. J., 1995. Habitat-specific predation susceptibilities of a littoral rotifer to two invertebrate predators. Hydrobiologia 313(314): 205–211.Google Scholar
  95. Werner, E. E., 1988. Size, scaling, and the evolution of complex life cycles. In Perrson, L. & B. Ebenmann (eds), Size-Structured Populations: Ecology and Evolution. Springer, Berlin: 60–81.Google Scholar
  96. Werner, E. E. & J. F. Gilliam, 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15: 393–425.Google Scholar
  97. Wilson, D. P., 1952. The influence of the nature of the substratum on the metamorphosis of the larvae of marine animals especially the larvae of Ophelia bicornis Savigny. Annales de l’Institut Océanographique 27: 49–156.Google Scholar
  98. Woods, H. A. & R. Wilson, 2013. Ontogenetic changes in the body temperature of an insect herbivore. Functional Ecology 27: 1322–1331.Google Scholar
  99. Wright, H. G. S., 1959. Development of the peduncle in a sessile rotifer. Journal of the Quekett Microscopical Club. Series 4 5: 231–234.Google Scholar
  100. Young, C. M., 1990. Larval ecology of marine invertebrates: a sesquicentennial history. Ophelia 32: 1–48.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesRipon CollegeRiponUSA
  2. 2.Department of Biological SciencesUniversity of Massachusetts at LowellLowellUSA
  3. 3.Department of Biological SciencesUniversity of Texas at El PasoEl PasoUSA
  4. 4.Department of BiologyRipon CollegeRiponUSA

Personalised recommendations