Advertisement

Hydrobiologia

, Volume 844, Issue 1, pp 43–54 | Cite as

Negative phototactic response to UVR in three cosmopolitan rotifers: a video analysis approach

  • Pierluigi ColangeliEmail author
  • Ulrike E. Schlägel
  • Ulrike Obertegger
  • Jana S. Petermann
  • Ralph Tiedemann
  • Guntram Weithoff
ROTIFERA XV

Abstract

Ultraviolet radiation (UVR) is an environmental stressor in several ecosystems and can affect organisms’ survival and reproduction, and community structure. Rotifers cope with UVR stress adopting preventive behavioral and metabolic mechanisms. However, the demonstration of an immediate behavioral response in rotifers is missing. We investigated the short-term response of rotifers to UVR, by combining video analysis and movement ecology methods, in three common species: Brachionus calyciflorus, Keratella cochlearis, and Keratella quadrata. We recorded the behavior of B. calyciflorus (both sexes), K. quadrata, and K. cochlearis (females) exposed to white light, and to intermittent cycles of UVR (30:30 s). Individual trajectories were extracted from videos with open-source software. We found that B. calyciflorus females exposed to UVR exhibited strong negative phototaxis with increased swimming speed, and a weak positive phototaxis in males. Keratella cochlearis and K. quadrata showed a weaker response. Our study reveals a species-specific behavioral response to UVR in rotifers. Furthermore, we highlight how sexual dimorphism in B. calyciflorus does not only occur in morphology and movement, but also in behavioral traits. Our results help to understand zooplankton community dynamics by providing a mechanistic explanation of UVR response in one major zooplankton taxonomic group.

Keywords

Risk avoidance behavior Brachionus calyciflorus Keratella cochlearis BEMOVI Movement ecology 

Notes

Acknowledgements

We thank Frank Pennekamp for helping in many occasions with the code, the BioMove group for helpful discussions, and two anonymous reviewers and the Editors of the Special Issue Rotifera XV for their comments. We also thank Christina Schirmer and Christina Luchs for providing rotifers colonies and for helping with the experiments, and Axel Heuer for measuring the LED emission peak. Lastly, we acknowledge the ideas from the master students’ practical workshops. This study is supported by the Deutsche Forschungsgemeinschaft (DFG), BioMove research training group (www.biomove.org/), Grant No. DFG-GRK 2118/1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10750_2018_3801_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1219 kb)

References

  1. Cabrera, S., M. Lopez & B. Tartarotti, 1997. Phytoplankton and zooplankton response to ultraviolet-radiation in a high-altitude andean lake - short-term versus long-term effects. Journal of Plankton Research 19: 1565–1582.CrossRefGoogle Scholar
  2. Clément, P., 1980. Phylogenetic relationships of rotifers, as derived from photoreceptor morphology and other ultrastructural analyses. Hydrobiologia 73: 93–117.CrossRefGoogle Scholar
  3. Clement, P., E. Wurdak & J. Amsellem, 1983. Behavior and ultrastructure of sensory organs in rotifers. Hydrobiologia 104: 89–129.CrossRefGoogle Scholar
  4. Colangeli, P., A. Cieplinski & U. Obertegger, 2016. Filming of zooplankton: a case study of rotifer males and Daphnia magna. Journal of Limnology 75: 204–209.Google Scholar
  5. Cornillac, A., E. Wurdak & P. Clément, 1983. Phototaxis in monochromatic light and microspectrophotometry of the cerebral eye of the rotifer Brachionus calyciflorus. Hydrobiologia.  https://doi.org/10.1007/BF00045967.CrossRefGoogle Scholar
  6. Coulon, P. Y., J. P. Charras, J. L. Chassé, P. Clément, A. Cornillac, A. Luciani & E. Wurdak, 1983. An experimental system for the automatic tracking and analysis of rotifer swimming behaviour. Hydrobiologia 104: 197–202.CrossRefGoogle Scholar
  7. Dawidowicz, P. & C. J. Loose, 1992. Metabolic costs during predator-induced diel vertical migration of Daphnia. Limnology and Oceanography 37: 1589–1595.CrossRefGoogle Scholar
  8. De Mora, S., S. Demers, & S. Vernet, 2000. The Effects of UV Radiation in the Marine Environment. Cambridge Environmental Chemistry Series. Cambridge University Press, Cambridge,  https://doi.org/10.1017/cbo9780511535444.Google Scholar
  9. Dodson, S., 1990. Predicting diel vertical migration of zooplankton. Limnology and Oceanography 35: 1195–1200.CrossRefGoogle Scholar
  10. Eliceiri, K., C. A. Schneider, W. S. Rasband & K. W. Eliceiri, 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.CrossRefGoogle Scholar
  11. Field, C. B., 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science American Association for the Advancement of Science 281: 237–240.CrossRefGoogle Scholar
  12. Fontaneto, D., & W. De Smet, 2015. Rotifera. In: Schmidt-Rhaesa (eds), Handbook of Zoology, Gastrotricha and Gnathifera, 3. De Gruyter, Berlin: 217–300.Google Scholar
  13. Häder, D.-P., H. D. Kumar, R. C. Smith & R. C. Worrest, 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical & Photobiological Sciences Royal Society of Chemistry 6: 267–285.CrossRefGoogle Scholar
  14. Hansson, L. A. & S. Hylander, 2009. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochemical and Photobiological Sciences Royal Society of Chemistry 8: 1266–1275.CrossRefGoogle Scholar
  15. Hansson, L. A., S. Hylander & R. Sommaruga, 2007. Escape from UV threats in zooplankton: a cocktail of behavior and protective pigmentation. Ecology 88: 1932–1939.CrossRefGoogle Scholar
  16. Harvell, C. D., 1990. The Ecology and Evolution of Inducible Defenses. The Quarterly Review of Biology. Princeton University Press, Princeton.Google Scholar
  17. Herbert, P. D. N. & C. J. Emery, 1990. The adaptive significance of cuticular pigmentation in Daphnia. Functional Ecology JSTOR 4: 703–710.CrossRefGoogle Scholar
  18. Hochberg, R., S. O’Brien & A. Puleo, 2010. Behavior, metamorphosis, and muscular organization of the predatory rotifer Acyclus inquietus (Rotifera, Monogononta). Invertebrate Biology 129: 210–219.CrossRefGoogle Scholar
  19. Jennings, H. S., 1901. On the significance of the spiral swimming of organisms. The American Naturalist 35: 369–378.CrossRefGoogle Scholar
  20. Kaartvedt, S., W. Melle, T. Knutsen & H. R. Skjoldal, 1996. Vertical distribution of fish and krill beneath water of varying optical properties. Marine Ecology Progress Series JSTOR 136: 51–58.CrossRefGoogle Scholar
  21. Kim, H.-J., C. Sawada, J.-S. Rhee, J.-S. Lee, K. Suga & A. Hagiwara, 2014. Nutritional effects on the visual system of the rotifer Brachionus plicatilis sensu stricto (Rotifera: Monogononta). Journal of Experimental Marine Biology and Ecology 460: 177–183.CrossRefGoogle Scholar
  22. Leech, D. M. & C. E. Williamson, 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon, or lake transparency? Ecological Applications 10: 1530–1540.CrossRefGoogle Scholar
  23. Leech, D. M., A. Padeletti & C. E. Williamson, 2005. Zooplankton behavioral responses to solar UV radiation vary within and among lakes. Journal of Plankton Research 27: 461–471.CrossRefGoogle Scholar
  24. Luciani, A., J. L. Chassé & P. Clément, 1983. Aging in Brachionus plicatilis: the evolution of swimming as a function of age at two different calcium concentrations. Hydrobiologia.  https://doi.org/10.1007/BF00045960.CrossRefGoogle Scholar
  25. Mimouni, P., A. Luciani & P. Clément, 1993. How females of the rotifer Asplanchna brightwelli swim in darkness and light: an automated tracking study. Hydrobiologia.  https://doi.org/10.1007/BF00025827.CrossRefGoogle Scholar
  26. Obertegger, U., G. Flaim & R. Sommaruga, 2008. Multifactorial nature of rotifer water layer preferences in an oligotrophic lake. Journal of Plankton Research 30: 633–643.CrossRefGoogle Scholar
  27. Obertegger, U., A. Cieplinski, M. Raatz & P. Colangeli, 2018. Switching between swimming states in rotifers–case study Keratella cochlearis. Marine and Freshwater Behaviour and Physiology.  https://doi.org/10.1080/10236244.2018.1503541.CrossRefGoogle Scholar
  28. Overholt, E. P., K. C. Rose, C. E. Williamson, J. M. Fischer & N. A. Cabrol, 2016. Behavioral responses of freshwater calanoid copepods to the presence of ultraviolet radiation: avoidance and attraction. Journal of Plankton Research 38: 16–26.CrossRefGoogle Scholar
  29. Patalas, K., 1984. Mid-summer mixing depths of lakes of different latitudes. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie Taylor & Francis 22: 97–102.Google Scholar
  30. Pennak, R. W., 1973. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia. Internationale Revue der gesamten Hydrobiologie und Hydrographie Wiley Online Library 58: 569–576.CrossRefGoogle Scholar
  31. Pennekamp, F., N. Schtickzelle & O. L. Petchey, 2015. BEMOVI, software for extracting behavior and morphology from videos, illustrated with analyses of microbes. Ecology and Evolution 5: 2584–2595.CrossRefGoogle Scholar
  32. Persaud, A. D., R. E. Moeller, C. E. Williamson & C. W. Burns, 2007. Photoprotective compounds in weakly and strongly pigmented copepods and co-occurring cladocerans. Freshwater Biology 52: 2121–2133.CrossRefGoogle Scholar
  33. Pontin, R. M., 1978. A key to the freshwater planktonic and semi-planktonic Rotifera of the British Isles. Freshwater Biological Association.Google Scholar
  34. R core team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  35. Ricci, C. & G. Melone, 1998. Dwarf males in monogonont rotifers. Aquatic Ecology 32: 361–365.CrossRefGoogle Scholar
  36. Robertson, D. M. & R. A. Ragotzkie, 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquatic Sciences 52: 360–380.CrossRefGoogle Scholar
  37. Snell, T. W., R. K. Johnston, B. Rabeneck, C. Zipperer & S. Teat, 2014. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera). Experimental Gerontology 52: 55–69.CrossRefGoogle Scholar
  38. Soleymani, A., F. Pennekamp, O. L. Petchey & R. Weibel, 2015. Developing and integrating advanced movement features improves automated classification of ciliate species. PLoS ONE 10: e0145345.CrossRefGoogle Scholar
  39. Sommaruga, R., 2001. The role of solar UV radiation in the ecology of alpine lakes. Journal of Photochemistry and Photobiology B 62: 35–42.CrossRefGoogle Scholar
  40. Verschuren, D., T. C. Johnson, H. J. Kling, D. N. Edgington, P. R. Leavitt, E. T. Brown, M. R. Talbot & R. E. Hecky, 2002. History and timing of human impact on Lake Victoria, East Africa. Proceedings of the Royal Society B: Biological Sciences The Royal Society 269: 289–294.CrossRefGoogle Scholar
  41. Viaud, G., 1950. Recherches experimentales sur le phototropisme des planaires. Behaviour 2: 163–215.CrossRefGoogle Scholar
  42. Wallace, R. L., 2002. Rotifers: exquisite metazoans. Integrative and Comparative Biology 42: 660–667.CrossRefGoogle Scholar
  43. Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engstrom & B. R. Hargreaves, 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82: 1748–1760.CrossRefGoogle Scholar
  44. Yúfera, M., E. Pascual & J. M. Olivares, 2005. Factors affecting swimming speed in the rotifer Brachionus plicatilis Rotifera X. Springer, Berlin: 375–380.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Ecology and Ecosystem Modelling, Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  2. 2.Plant Ecology and Conservation Biology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam-GolmGermany
  3. 3.Department of Sustainable Agro-ecosystems and BioresourcesResearch and Innovation CentreSan Michele all’adigeItaly
  4. 4.Department of BiosciencesUniversity of SalzburgSalzburgAustria
  5. 5.Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam-GolmGermany

Personalised recommendations