Advertisement

Hydrobiologia

, Volume 828, Issue 1, pp 21–39 | Cite as

Shape and size variation of Jenynsia lineata (Jenyns 1842) (Cyprinodontiformes: Anablepidae) from different coastal environments

  • Giselle Xavier Perazzo
  • Fabiano Corrêa
  • Pablo Calviño
  • Felipe Alonso
  • Walter Salzburger
  • Adriana Gava
Primary Research Paper

Abstract

A key question in ecological speciation is to understand the causes and consequences of phenotypic divergence among populations. In this work, we analyzed the body shape and size variation in Jenynsia lineata across different coastal habitats along the Atlantic coast of South America. We hypothesized that J. lineata presents morphological variations to inhabit contrasting environments and that these adaptations are sex specific. We analyzed 13 populations from five coastal habitats, using linear and geometric morphometry, and tested the correlation of body shape variation with environmental variables to understand which environmental factors may influence body shape and size variation. Jenynsia lineata showed differences in body shape and size among populations, and these differences are specific to each sex. While females showed a variation in the caudal peduncle correlated with water current, we did not find such trait variation and correlation in males. Alternatively, individuals from marine rocky pools have a convex body curvature along the dorsal profile and larger body sizes, in both sexes. With these results, we describe the shape and size morphological variation of J. lineata and discuss this uncommon habitat-dependent sexual dimorphism in a Neotropical livebearer fish.

Keywords

Geometric and linear morphometrics Jenynsia multidentata Local adaptation Phenotypic plasticity Sexual dimorphism 

Notes

Acknowledgements

The authors are grateful to Dr. Bruna F. Nornberg, Dr. Daiane Carrasco, Dr. Fernando Quintela and MSc. Daiana K. Garcez for the help in the field work; Dr. Madlen Stange and Dr. Rodrigo Fornel for great guidance about geometric morphometric analyses; and Dr. Gustavo E. Chiaramonte and Prof. Ricardo Ferriz for the ichthyologic collection access at Museo Argentino de Ciencias Naturales Bernardino Rivadavia. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and by the Swiss Government Excellence Scholarship for Foreign Students—Switzerland.

References

  1. Adams, D. C. & E. Otárola-Castillo, 2013. Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4: 393–399.Google Scholar
  2. Adams, D. C., M. L. Collyer, A. Kaliontzopoulou & E. Sherratt, 2017. 2017 Geomorph: software for geometric morphometric analyses. R Package Version 3: 4.Google Scholar
  3. Amorim, P. F., 2018. Jenynsia lineata species complex, revision and new species description (Cyrpinodontiformes: Anablepidae). Journal of Fish Biology 92(5): 1312–1332.Google Scholar
  4. Araújo, M. S., S. I. Perez, M. J. C. Magazoni & A. C. Petry, 2014. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation. BMC Evolutionary Biology 14: 251–261.PubMedPubMedCentralGoogle Scholar
  5. Baird, S. F. & C. F. Girard, 1853. Descriptions of some new fishes from the River Zuni. Proceedings of the Academy of Natural Sciences of Philadelphia 6: 368–369.Google Scholar
  6. Baker, J. A., M. A. Wund, D. C. Heins, R. W. King, M. L. Reyes & S. A. Foster, 2015. Life-history plasticity in female threespine stickleback. Heredity 115: 322–334.PubMedPubMedCentralGoogle Scholar
  7. Bastos, R. F., M. V. Condini & A. Garcia, 2013. Fish species list of coastal streams in southern Brazil, with notes on austral distribution limits of marine and freshwater endangered species. Pan-American Journal of Aquatic Sciences 8: 347–351.Google Scholar
  8. Bastos, R. F., F. Corrêa, K. O. Winemiller & A. M. Garcia, 2017. Are you what you eat? Effects of trophic discrimination factors on estimates of food assimilation and trophic position with a new estimation method. Ecological Indicators 75: 234–241.Google Scholar
  9. Berner, D., D. C. Adams, A. C. Grandchamp & A. P. Hendry, 2008. Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. Journal of Evolutionary Biology 21: 1653–1665.PubMedGoogle Scholar
  10. Berner, D., A. C. Grandchamp & A. P. Hendry, 2009. Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution 63: 1740–1753.PubMedGoogle Scholar
  11. Betito, R., 2006. Comparação da complexidade das adaptações bio-ecológicas de dois peixes (Jenynsia multidentata e Poecilia vivipara) (Cyprinodontiformes) no estuário da Lagoa dos Patos (RS-Brasil). Revista Didática Sistêmica 3: 71–100.Google Scholar
  12. Bisazza, A., S. Manfredini & A. Pilastro, 2000. Sexual competition, coercive mating and mate assessment in the one-sided livebearer, Jenynsia multidentata: are they predictive of sexual dimorphism? Ethology and Sociobiology 106: 961–978.Google Scholar
  13. Bloch, M. E. & J. G. Schneider, 1801. M.E. Blochii, Systema Ichthyologiae iconibus cx illustratum. Post obitum auctoris opus inchoatum absolvit, correxit, interpolavit Jo. Gottlob Schneider, Saxo. Berolini. Sumtibus Austoris Impressum et Bibliopolio Sanderiano Commissum. pp i-lx + 1-584.Google Scholar
  14. Boeuf, G. & P. Payan, 2001. How should salinity influence fish growth? Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 130: 411–423.Google Scholar
  15. Booksmythe, I., M. Head, J. S. Keogh & M. Jennions, 2016. Fitness consequences of artificial selection on relative male genital size. Nature Communications 7: 11597.PubMedPubMedCentralGoogle Scholar
  16. Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, London.Google Scholar
  17. Bronson, F. H., 1985. Mammalian reproduction: an ecological perspective. Biology of Reproduction 32: 1–26.PubMedGoogle Scholar
  18. Bruckerhoff, L. A. & D. D. Magoulick, 2017. Hydrologic regimes as potential drivers of morphologic divergence in fish. Evolutionary Ecology 31: 517–531.Google Scholar
  19. Calviño, P. & F. Alonso, 2016. First record of the genus Jenynsia from marine water on the coast of Punta del Este, Maldonado, Uruguay (Cyprinodontiformes: Anablepidae). Journal of Fish Biology 88: 1236–1240.PubMedGoogle Scholar
  20. Castelao, R. M. & O. O. Moller-Jr, 2006. A modeling study of Patos Lagoon (Brazil) flow response to idealized wind and river discharge: dynamical analysis. Brazilian Journal of Oceanography 54: 1–17.Google Scholar
  21. Corrêa, F., E. F. de Oliveira, T. Tuchtenhagen, J. Pouey & S. Piedras, 2015. Ichthyofauna of the hydrographic basin of Chasqueiro Stream (Mirim Lagoon system, southern Brazil) generating subsidies for conservation and management. Biota Neotropica 15: e0006.Google Scholar
  22. Crispo, E., 2008. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. Journal of Evolutionary Biology 21: 1460–1469.PubMedGoogle Scholar
  23. Dennenmoser, S., S. M. Vamosi, A. W. Nolte & S. M. Rogers, 2017. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq. Molecular Ecology 26: 25–42.PubMedGoogle Scholar
  24. Fabre, A. C., R. Cornette, K. Huyghe, D. A. Andrade & A. Herrel, 2014. Linear versus geometric morphometric approaches for the analysis of head shape dimorphism in lizards. Journal of Morphology 275: 1016–1026.PubMedGoogle Scholar
  25. Figueiredo, S. A. & L. J. Calliari, 2006. Washouts in the central and northern littoral of Rio Grande do Sul state, Brazil: distribution and implications. Journal of Coastal Research Special Issue 2004: 366–370.Google Scholar
  26. Fontoura, N. F., A. S. Braun, D. S. Lewis & G. D. B. Soto, 1994. Dinâmica populacional da ictiofauna da lagoa Fortaleza, Cidreira, Rio Grande do Sul II. Jenynsia lineata (Jenyns, 1843) (Teleostei, Anablepidae). Biosciencias 2: 79–93.Google Scholar
  27. Foster, S. A., M. A. Wund, M. A. Graham, R. L. Earley, R. Gardiner, T. Kearns & J. A. Baker, 2015. Iterative development and the scope for plasticity: contrasts among trait categories in an adaptive radiation. Heredity 115: 335–348.PubMedPubMedCentralGoogle Scholar
  28. Fowler, H. W., 1940. Zoological results of the second Bolivian expedition for the Academy of Natural Sciences of Philadelphia, 1936–1937. Part I – the fishes. Proceedings of the Academy of Natural Sciences of Philadelphia 92: 43–103.Google Scholar
  29. Gandara-Martins, A. L., C. A. Borzone, P. D. B. Guilherme & J. V. Vieira, 2014. Spatial effects of a washout on sandy beach macrofauna zonation and abundance. Journal of Coastal Research 81: 1459–1468.Google Scholar
  30. Garcia, A. M., J. P. Vieira, K. O. Winemiller & M. B. Raseira, 2004. Reproductive cycle and spatiotemporal variation in abundance of the one-sided livebearer Jenynsia multidentata, in Patos Lagoon, Brazil. Hydrobiologia 515: 39–48.Google Scholar
  31. Gaston, K. A. & T. E. Lauer, 2015. Morphometric variation in bluegill Lepomis macrochirus and green sunfish Lepomis cyanellus in lentic and lotic systems. Journal of Fish Biology 86: 317–332.PubMedGoogle Scholar
  32. Gianuca, N. M., 1998. Invertebrados bentonicos da praia. In Seeliger, U., C. Odebrecht & J. P. Castello (eds), Os ecossistemas costeiro e marinho do extremo sul do Brasil1. Ecoscientia, Rio Grande: 127–130.Google Scholar
  33. Gibson, R. N., 1986. Intertidal teleosts: life in a fluctuating environment. In Pitcher, T. J. (ed.), The Behaviour of Teleost Fishes. Bristol, England: 388–408.Google Scholar
  34. Ginter, C. C., T. J. DeWitt, F. E. Fish & C. D. Marshall, 2012. Fused traditional and geometric morphometrics demonstrate pinniped whisker diversity. PLoS ONE 7(4): e34481.PubMedPubMedCentralGoogle Scholar
  35. Gomes, J. L. & L. R. Monteiro, 2008. Morphological divergence patterns among populations of Poecilia vivipara (Teleostei Poeciliidae): test of an ecomorphological paradigm. Biological Journal of the Linnean Society 93: 799–812.Google Scholar
  36. Goyenola, G., C. Iglesias, N. Mazzeo & E. Jeppesen, 2011. Analysis of the reproductive strategy of Jenynsia multidentata (Cyprinodontiformes, Anablepidae) with focus on sexual differences in growth, size, and abundance. Hydrobiologia 673: 245–257.Google Scholar
  37. Haas, T. C., M. J. Blum & D. C. Heins, 2010. Morphological responses of a stream fish to water impoundment. Biology Letters 6: 803–806.PubMedPubMedCentralGoogle Scholar
  38. Harrell, F., 2014. Hmisc: a package of miscellaneous R functions.Google Scholar
  39. Hatzinger, R., K. Hornik, H. Nagel & M. J. Maier, 2014. R: Einfuhrung durch angewandte Statistik. Pearson Studium, Munchen.Google Scholar
  40. Heinen-Kay, J. L., K. E. Morris, N. A. Ryan, S. L. Byerly, R. E. Venezia, M. N. Peterson & R. B. Langerhans, 2015. A trade-off between natural and sexual selection underlies diversification of a sexual signal. Behavioral Ecology 26(2): 533–542.Google Scholar
  41. Ingley, S. J., H. Camarillo, H. Willis & J. B. Johnson, 2016. Repeated evolution of local adaptation in swimming performance: population-level trade-offs between burst and endurance swimming in Brachyrhaphis freshwater fish. Biological Journal of the Linnean Society 119: 1011–1026.Google Scholar
  42. Jenyns, L. 1842. The zoology of the voyage of H.M.S. Beagle, under the command of Captain Fitzroy, R.N., during the years 1832 to 1836. Part IV. Fish. London, Smith, Elder & Co.Google Scholar
  43. Jørgensen, H. B. H., C. Pertoldi, M. M. Hansen, D. E. Ruzzante & V. Loeschcke, 2008. Genetic and environmental correlates of morphological variation in a marine fish: the case of Baltic Sea herring (Clupea harengus). Canadian Journal of Fisheries and Aquatic Sciences 65: 389–400.Google Scholar
  44. Kawecki, T. J. & D. Ebert, 2004. Conceptual issues in local adaptation. Ecology Letters 7: 1225–1241.Google Scholar
  45. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.PubMedGoogle Scholar
  46. Laming, P. R., C. W. Funston, D. Roberts & M. J. Armstrong, 1982. Behavioural, physiological and morphological adaptations of the shanny (Blennius pholis) to the intertidal habitat. Journal of the Marine Biological Association of the United Kingdom Cambridge University Press 62: 329–338.Google Scholar
  47. Langerhans, R. B., 2010. Predicting evolution with generalized models of divergent selection: a case study with poeciliid fish. Integrative and Comparative Biology 50: 1167–1184.PubMedGoogle Scholar
  48. Langerhans, R. B. & T. J. DeWitt, 2004. Shared and unique features of evolutionary diversification. The American Naturalist 164: 335–349.PubMedGoogle Scholar
  49. Langerhans, R. B., C. A. Layman, A. M. Shokrollahi & T. J. DeWitt, 2004. Predator-driven phenotypic diversification in Gambusia affinis. Evolution 58: 2305–2318.PubMedGoogle Scholar
  50. Langerhans, R. B., C. A. Layman & T. J. DeWitt, 2005. Male genital size reflects a tradeoff between attracting mates and avoiding predators in two live-bearing fish species. Proceedings of the National Academy of Sciences of the United States of America 102: 7618–7623.PubMedPubMedCentralGoogle Scholar
  51. Lauder, G. V., 2015. Fish locomotion: recent advances and new directions. Annual Review of Marine Science 7: 521–545.PubMedGoogle Scholar
  52. Linnaeus, C., 1758. Tomus I. Syst. nat., ed. 10. Holmiae, Laurentii Salvii: [1-4], 1-824Google Scholar
  53. Loebmann, D. & J. P. Vieira, 2005. Distribuição espacial e abundância das assembleias de peixes no Parque Nacional da Lagoa do Peixe, Rio Grande do Sul, Brasil. Revista Brasileira de Zoologia 22: 667–675.Google Scholar
  54. Lopez-Rodriguez, N. C., C. M. de Barros & A. C. Petry, 2017. A macroscopic classification of the embryonic development of the one-sided livebearer Jenynsia multidentata (Teleostei: Anablepidae). Neotropical Ichthyology 15(4): e160170.Google Scholar
  55. Mai, A. C. G., A. M. Garcia & J. P. Vieira, 2005. Influência da salinidade no crescimento de juvenis de Jenynsia multidentata Jenyns (Pisces). Revista Brasileira de Zoologia 22: 780–783.Google Scholar
  56. Mai, A. C. G., A. M. Garcia, J. P. Vieira & M. G. Mai, 2007. Reproductive aspects of the one-sided livebearer Jenynsia multidentata (Jenyns, 1842) (Cyprinodontiformes) in the Patos Lagoon estuary, Brazil. Pan-American Journal of Aquatic Sciences 2: 40–46.Google Scholar
  57. Marchinko, K. B. & D. Schluter, 2007. Parallel evolution by correlated response: lateral plate reduction in threespine stickleback. Evolution 61: 1084–1090.PubMedGoogle Scholar
  58. Mitteroecker, P. & P. Gunz, 2009. Advances in geometric morphometrics. Evolutionary Biology 36: 235–247.Google Scholar
  59. Mitteroecker, P., P. Gunz, S. Windhager & K. Schaefer, 2013. A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix-Italian Journal of Mammalogy 24: 59–66.Google Scholar
  60. Mokodongan, D. F., J. Montenegro, K. Mochida, S. Fujimoto, A. Ishikawa, R. Kakioka, L. Yong, R. K. Mulis, I. F. Hadiaty, K. W. A. Mandagi, N. Masengi, Y. Hashiguchi Wachi & J. Kitano, 2018. Phylogenetics revels habitat-associated body shape divergence in Oryzias woworae species group (Teleostei: Adrianichthydae). Molecular and Phylogenetics 118: 194–203.Google Scholar
  61. Norris, A. J., D. R. DeVries & R. Wright, 2010. Coastal estuaries as habitat for a freshwater fish species: exploring population-level effects of salinity on largemouth bass. Transactions of the American Fisheries Society 139: 610–625.Google Scholar
  62. Nosil, P., 2012. Ecological Speciation. Oxford University Press, Oxford.Google Scholar
  63. Olsen, Z., J. Anderson & D. McDonald, 2016. Morphological and molecular variation among populations of tidewater (Menidia peninsulae) and inland (M. beryllina) silversides: insight into drivers of adaptation and speciation of silverside fishes. Environmental Biology of Fishes 99: 857–871.Google Scholar
  64. Peterson, L. M. & F. W. Weckerly, 2017. Male group size, female distribution and changes in sexual segregation by Roosevelt elk. PLoS ONE 12: e0187829.PubMedPubMedCentralGoogle Scholar
  65. Porter, C. K. & C. K. Akcali, 2018. An alternative to adaptation by sexual selection: habitat choice. Trends in Ecology & Evolution 33: 576–581.Google Scholar
  66. Quintela, F. M., L. F. M. N. Neves, I. G. Medvedovisky, M. B. Santos, M. C. L. M. Oliveira & M. R. C. Figueiredo, 2009. Relação dos anfíbios da Ilha dos Marinheiros, estuário da Lagoa dos Patos, Rio Grande do Sul, Brasil. Revista Brasileira de Biociências 7: 231–233.Google Scholar
  67. Quintela, F., F. Corrêa, R. M. Pinheiro & D. Loebmann, 2018. Ichthyofauna of Marinheiros Island, Patos Lagoon estuary, southern Brazil. Biota Neotropica 18: e20170430.Google Scholar
  68. R Core Team, 2013. R: A Language and Environmental for Statistical Computing. R Foundation for Statistical Computing, Viena.Google Scholar
  69. Raiche, G., 2010. nFactors: a R package for parallel analysis and non graphical to Cattell scree test.Google Scholar
  70. Ramos, L. A. & J. P. Vieira, 2001. Composição específica e abundância de peixes de zonas rasas dos cinco estuários do Rio Grande do Sul, Brasil. Boletim do Instituto de Pesca 27: 109–121.Google Scholar
  71. Randall, J. E., 2009. A review of the gobiid fishes of Easter Island, with description of a new species. Aqua, International Journal of Ichthyology 15(4): 177–190.Google Scholar
  72. Regan, C. T., 1906. Description of a new cyprinodont fish of the genus Jenynsia from Argentina. Annals and Magazine of Natural History 7: 18–154.Google Scholar
  73. Revelle, W., 2017. psych: Procedures for Personality and Psyhological Research. Northwestern University, Illinois.Google Scholar
  74. Rohlf, F. J., 2013. tps Utility program. SUNY at Stony Brook.Google Scholar
  75. Rohlf, F. J., 2015. The tps series of software. Hystrix-Italian Journal of Mammalogy 26: 9–12.Google Scholar
  76. Rohlf, F. J. & D. Slice, 1990. Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.Google Scholar
  77. Rowiński, P. K., F. Mateos-Gonzalez, E. Sandblom, F. Jutfelt, A. Ekström & L. F. Sundström, 2015. Warming alters the body shape of European perch Perca fluviatilis. Journal of Fish Biology 87: 1234–1247.PubMedGoogle Scholar
  78. Ruckstuhl, K. E., 2007. Sexual segregation in vertebrates: proximate and ultimate causes. Integrative and Comparative Biology 47: 245–257.PubMedGoogle Scholar
  79. Scanes, P., A. Ferguson & J. Potts, 2017. Estuary form and function: implications for palaeoecological studies. In Weckström, K., K. M. Saunders, P. A. Gell & C. G. Skilbeck (eds), Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, Vol. 20. Springer, Dordrecht: 9–44.Google Scholar
  80. Schluter, D., 2009. Evidence for ecological speciation and its alternative. Science 323: 737–741.PubMedGoogle Scholar
  81. Shine, R., 1986. Sexual differences in morphology and niche utilization in an aquatic snake, Acrochordus arafurae. Oecologia 69: 260–267.PubMedGoogle Scholar
  82. Shukla, R. & A. Bhat, 2017. Morphological divergences and ecological correlates among wild populations of zebrafish (Danio rerio). Environmental Biology of Fishes 100: 251–264.Google Scholar
  83. Sidlauskas, B. L., J. H. Mol & R. P. Vari, 2011. Dealing with allometry in linear and geometric morphometrics: a taxonomic case study in the Leporinus cylindriformis group (Characiformes: Anastomidae) with description of a new species from Suriname. Zoological Journal of the Linnean Society 162: 103–130.Google Scholar
  84. Stange, M., G. Aguirre-Fernández, R. G. Cooke, T. Barros, W. Salzburger & M. R. Sánchez-Villagra, 2016. Evolution of opercle bone shape along a macrohabitat gradient: species identification using mtDNA and geometric morphometric analyses in neotropical sea catfishes (Ariidae). Ecology and Evolution 6: 5817–5830.PubMedPubMedCentralGoogle Scholar
  85. Theis, A., F. Ronco, A. Indermaur, W. Salzburger & B. Egger, 2014. Adaptive divergence between lake and stream populations of an East African cichlid fish. Molecular Ecology 23: 5304–5322.PubMedGoogle Scholar
  86. Torres-Dowdal, J., C. A. Handelsman, D. N. Reznick & C. K. Ghalambor, 2012. Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata). Evolution 66: 3432–3443.Google Scholar
  87. Townsend, C. R., M. Begon & J. L. Harper, 2008. Essentials of Ecology, 4th ed. Malden, Wiley.Google Scholar
  88. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.Google Scholar
  89. Vera-Duarte, J., C. A. Bustos & M. F. Landaeta, 2017. Diet and body shape changes of pāroko Kelloggella disalvoi (Gobiidae) from intertidal pools of Easter Island. Journal of Fish Biology 91: 1319–1336.PubMedGoogle Scholar
  90. Volcan, M. V., L. E. K. Lanés, Â. C. Gonçalves, A. P. da Fonseca & M. P. Cirne, 2012. The fish fauna of the Corrientes stream basin, Patos lagoon system, state of Rio Grande do Sul, Southern Brazil. Check List 8: 77–82.Google Scholar
  91. Wearmouth, V. J. & D. W. Sims, 2008. Sexual segregation in marine fishes, reptiles, birds and mammals: behavior patterns, mechanisms and conservation implications. In Curry, B. E. (ed.), Advances in Marine Biology. Elsevier, Amsterdam: 107–170.Google Scholar
  92. Webster, M. & H. Sheets, 2010. A practical introduction to landmark-based geometric morphometrics. The Paleontological Society Papers 16: 163–188.Google Scholar
  93. Zanella, L. N., J. Defaveri, D. Zanella, J. Merilä, R. Šanda & M. Mrakovčić, 2015. Does predation drive morphological differentiation among Adriatic populations of the three-spined stickleback? Biological Journal of the Linnean Society 115: 219–240.Google Scholar
  94. Zelditch, M. L., D. L. Swiderski & H. D. Sheets, 2012. Geometric Morphometrics for Biologists: A Primer. Elsevier, London.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Instituto de Ciências Biológicas, PPG Biologia de Ambientes Aquáticos ContinentaisUniversidade Federal do Rio GrandeRio GrandeBrazil
  2. 2.Laboratório de Ictiologia e Ecologia AquáticaUniversidade Federal do AcreRio BrancoBrazil
  3. 3.Grupo de Investigación y Conservación de Killis (GICK)BerissoArgentina
  4. 4.CONICET - Instituto de Bio y Geociencias del NOA (IBIGEO)Rosario De LermaArgentina
  5. 5.Zoological InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations