, Volume 828, Issue 1, pp 11–20 | Cite as

Microhabitat selection of axolotls, Ambystoma mexicanum, in artificial and natural aquatic systems

  • Cristina Ayala
  • Alejandra G. Ramos
  • Ángel Merlo
  • Luis ZambranoEmail author
Primary Research Paper


Studies of habitat selection are crucial for the conservation of threatened amphibians. Wild salamanders are often distributed near rocks or vegetation, which provide shelter. However, nothing is known about habitat selection of the Mexican axolotl (Ambystoma mexicanum), an endangered salamander of great cultural and ecological value. This study aims to test the relationship between vegetation presence and the distribution of captive-raised axolotls in two systems: a closed canal in their native ecosystem (n = 10) and an artificial canal within a zoological park (n = 6). We used radio-telemetry to analyse the hourly distribution and movement patterns of axolotls in each study site during 72-h observational periods. We found that movement patterns and microhabitat selection were related to vegetation coverage and diurnal and nocturnal periods. Sex and age had no effect in habitat selection. Axolotls in both study sites preferred vegetated microhabitats, but in Xochimilco this preference was only significant during daytime when they were less active. These habitat-specific patterns of spatial distribution may represent behavioural strategies for reducing predation. The first approach of behavioural insights from this study will inform the construction of refuges to reduce the alarming depletion of axolotls in the wild.


Xochimilco Restoration Wetland Aquatic plants Amphibian conservation Mexico city 



We are grateful to the Zoológico de Chapultepec for allowing us to use their facilities, Adriana Fernández Ortega for providing us with useful information, and Gustavo Cabrera and Ruben Rojas in CORENA for partly supporting the project. Horacio Mena carried out the microchip implants and followed the health of the animals during the whole experiment. This work was part of CA’s thesis at the Posgrado de Ciencias Biológicas. AGR received a postdoctoral research Grant from PAPIIT IV200117 and IV210117.

Supplementary material

10750_2018_3792_MOESM1_ESM.png (5.9 mb)
Supplementary material 1 (PNG 6035 kb). Photographs showing the natural canal in Xochimilco (A) and the artificial canal in the Zoológico de Chapultepec (B)
10750_2018_3792_MOESM2_ESM.jpg (5.9 mb)
Supplementary material 2 (JPEG 6024 kb). Figures showing the spatial locations of individual axolotls (Ambystoma mexicanum) within the zoo (n = 6) and Xochimilco canals (March, n = 5; June, n = 5), each map represents one unique animal. The 72 points observed within quadrats, represent the hourly positions of each individual axolotl. Appendix 2A represents the zoo experiment, appendix 2B represents XochM, which was the first experiment in Xochimilco, and appendix 2C is XochJ, which was the second experiment in Xochimilco
10750_2018_3792_MOESM3_ESM.jpg (3.9 mb)
Supplementary material 3 (JPEG 3955 kb)
10750_2018_3792_MOESM4_ESM.jpg (3.9 mb)
Supplementary material 4 (JPEG 3960 kb)


  1. Arlt, D. & T. Pärt, 2007. Nonideal breeding habitat selection: a mismatch between preferences and fitness. Ecology 88: 792–801.CrossRefGoogle Scholar
  2. Armillas, P., 2017. Gardens on Swamp. Science 174: 653–661.CrossRefGoogle Scholar
  3. Bojórquez, L. & F. Villa, 1997. La zona lacustre de Xochimilco: Reconstrucciones hipotéticas. In Stephan-Otto, E. (ed.), Primer Seminario Internacional de Investigadores de Xochimilco. Asociación internacional de investigadores de Xochimilco A.C, México: 468–493.Google Scholar
  4. Brown, R., S. Cooke, G. Anderson & S. McKinley, 1999. Evidence to challenge the “2% rule” for biotelemetry. North American Journal of Fisheries Managment 19: 867–871.CrossRefGoogle Scholar
  5. Capers, R. S., R. Selky & G. J. Bugbee, 2010. The relative importance of local condition and regional preocesses in structuring aquatic plant communities. Freshwater Biology 55: 952–966.CrossRefGoogle Scholar
  6. Chalmers, R. J. & C. S. Loftin, 2006. Wetland and microhabitat use by nesting four-toed salamanders in maine. Journal of Herpetology 40: 478–485.CrossRefGoogle Scholar
  7. Contreras, V., E. Martínez-Meyer, E. Valiente & L. Zambrano, 2009. Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biological Conservation 142: 2881–2885.CrossRefGoogle Scholar
  8. Crump, M. & N. Scott, 1994. Visual encounters survey. In Heyer, W., M. A. Donelly, R. McDlarmld, L. Hayec & M. Foster (eds), Measuring and monitoring biological diversity Standard methods for amphibians. Smithsonian Institution Press, Washington D.C: 94–112.Google Scholar
  9. Davic, R. D. & L. P. Orr, 1987. The relationship between rock density and salamander density in a mountain stream. Herpetologica 43: 357–361.Google Scholar
  10. Denoël, M. & F. Andreone, 2003. Trophic habits and aquatic microhabitat use in gilled immature, paedomorphic and metamorphic alpine newts (Triturus alpestris apuanus) in a pond in central Italy. Belgian Journal of Zoology 133: 95–102.Google Scholar
  11. Duarte, C. M., J. Kañff & R. H. Paters, 1986. Patterns in biomass and cover aquatic macrophyres in lakes. Canadian Journal of Fisheries and Aquatic Science 43: 1900–1908.CrossRefGoogle Scholar
  12. Faccio, S., 2003. Postbreeding emigration and habitat use by Jefferson and spotted salamander in Vermont. Journal of Herpetology 37: 479–489.CrossRefGoogle Scholar
  13. Ferreira, N., C. Ramirez, G. Urbina & J. Cruz, 1993. Resultados preliminares de la reproducción del ajolote de Xochimilco Ambystoma mexicanum para el establecimiento de una colonia. In Xochimilco, U. A. M. (ed), Primer seminario internacional de investigadores de Xochimilco. Tomo II. Universidad Autónoma Metrolpolitana, Mexico, D.F.: 250Google Scholar
  14. Ficetola, G. F., C. Rondinini, A. Bonardi, D. Baisero & E. Padoa-Schioppa, 2015. Habitat availability for amphibians and extinction threat: a global analysis. Diversity and Distributions 21: 302–311.CrossRefGoogle Scholar
  15. Foster, R. L., A. M. McMillan & K. J. Roblee, 2009. Population status of hellbender salamanders (Cryptobranchus alleganiensis) in the Allegheny River Drainage of New York State. Journal of Herpetology 43: 579–588.CrossRefGoogle Scholar
  16. Grant, E. H. C., D. A. W. Miller, B. R. Schmidt, M. J. Adams, S. M. Amburgey, T. Chambert, S. S. Cruickshank, R. N. Fisher, D. M. Green, B. R. Hossack, P. T. J. Johnson, M. B. Joseph, T. A. G. Rittenhouse, M. E. Ryan, J. H. Waddle, S. C. Walls, L. L. Bailey, G. M. Fellers, T. A. Gorman, A. M. Ray, D. S. Pilliod, S. J. Price, D. Saenz, W. Sadinski & E. Muths, 2016. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Scientific Reports 6: 25625.CrossRefGoogle Scholar
  17. Gustafson, D. H., C. J. Pettersson & J. C. Malmgren, 2006. Great crested newts (Triturus cristatus) as indicators of aquatic plant diversity. The Herpetological Journal 16: 347–352.Google Scholar
  18. Hamer, A. J. & M. J. McDonnell, 2008. Amphibian ecology and conservation in the urbanising world: a review. Biological conservation 141(10): 2432–2449.CrossRefGoogle Scholar
  19. Hartel, T., S. Nemes, D. Cogǎlniceanu, K. Öllerer, O. Schweiger, C. I. Moga & L. Demeter, 2007. The effect of fish and aquatic habitat complexity on amphibians. Hydrobiologia 583: 173–182.CrossRefGoogle Scholar
  20. Hickman, C. R., M. D. Stone & A. Mathis, 2004. Priority use of chemical over visual cues for detection of predators by graybelly salamanders, eurycea multiplicata griseogaster. Herpetologica 60: 203–210.CrossRefGoogle Scholar
  21. Hill, M. O., 1974. Correspondence analysis: a neglected multi- variate method. Applied Statistics 3: 340–354.CrossRefGoogle Scholar
  22. Hinojosa, D. & L. Zambrano, 2004. Interactions of common carp (Cyprinus carpio) with benthic crayfish decapods in shallow ponds. Hydrobiologia 515: 115–122.CrossRefGoogle Scholar
  23. Hoffman, R., G. Larson & B. Samora, 2004. Responses of Ambystoma gracile to the removal of introduced nonnative fish from a mountain lake. Journal of Herpetology 38: 578–585.CrossRefGoogle Scholar
  24. Holomuski, J. R., 1986. Intraespecific predation and habitat use by tiger salamanders (Ambystoma tigrinum nebulosum). Journal of Herpetology 20: 439–441.CrossRefGoogle Scholar
  25. Janowsky-Bell, M. & N. Horner, 1999. Landscape structure, habitat fragmentation, and the ecology of insects. Agricultural and Forest Entomology 27: 503–512.Google Scholar
  26. Keen, W. H., 1984. Influence of moisture on activity of plethodontid salamander. Copeia 3: 684–688.CrossRefGoogle Scholar
  27. Kelley, J. & C. Macías-Garcia, 2010. Ontogenetic effects of captive breeding. In Breed, M. D. & J. Moore (eds), Encyclopedia of Animal Behavior 2. Academic Press, San Diego: 589–595.CrossRefGoogle Scholar
  28. La Toya, T. K., D. L. Jacob, M. A. Hanson, B. R. Herwing, S. E. Bowe & M. L. Otte, 2013. Macrophytes in shallow lakes: relationship with water, sediment and watershed characteristics. Aquatic Botany 109: 39–48.CrossRefGoogle Scholar
  29. Lecis, R., R. Lecis & K. Norris, 2004. Habitat correlates of distribution and local population decline of the endemic Sardinian newt Euproctus platycephalus. Biological Conservation 115: 303–317.CrossRefGoogle Scholar
  30. Lehtiniemi, M., J. Engström-Öst & M. Viitasalo, 2005. Turbidity decreases anti-preadtor bahaviour in pike larvae, Esox lucius. Environmental Biology of Fishes 73: 1–8.CrossRefGoogle Scholar
  31. López, S., 2012. Detección química y visual de la presencia de un depredador (Oreochromis niloticus) en Ambystoma mexicanum. UNAM.Google Scholar
  32. Madison, D. M., 1998. Habitat-contingent reproductive behaviour in radio-implanted salamanders: a model and test. Animal Behaviour 55: 1203–1210.CrossRefGoogle Scholar
  33. Marco, A., M. Lizana, A. Alvarez & A. R. Blaustein, 2001. Egg-wrapping behaviour protects newt embryos from UV radiation. Animal Behaviour 61: 639–644.CrossRefGoogle Scholar
  34. Marín, A. I., 2007. Preferencia de plantas para la ovoposición del ajolote Ambystoma mexicanum en condiciones de laboratorio. B.Sc. Dissertation, Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  35. Mayor, S. J., D. C. Schneider, J. A. Schaefer & S. P. Mahoney, 2009. Habitat selection at multiple scales. Écoscience 16: 238–247.CrossRefGoogle Scholar
  36. Mena, H. & L. Zambrano, 2016. A surgical procedure for implanting radio transmitters in axolotls (Ambystoma mexicanum). Herpetological Review 47: 34–38.Google Scholar
  37. Miaud, C., 1993. Predation on newt eggs (Triturus alpestris and T. helveticus): identification of predators and protective role of oviposition behaviour. Journal of Zoology 231: 575–581.CrossRefGoogle Scholar
  38. O’Hare, M. T., I. D. M. Gunn, D. S. Chapman, B. J. Dudley & B. V. Purse, 2012. Impact of space, local environmental and habitat connectivity on macrophyte communities in conservation lakes. Diversity and Distributions 18: 603–614.CrossRefGoogle Scholar
  39. Orser, P. N. & D. J. Shure, 1975. Population cycles and activity pattern of the dusky salamnder, Demohnathus fuscus fuscus. The American Midland Naturalist 93: 403–410.CrossRefGoogle Scholar
  40. Petranka, J., 1998. Salamanders of the United States and Canada. Smithsonian Institution Press, Washington D. C.Google Scholar
  41. Petranka, J. W., J. J. Just & E. C. Crawford, 1982. Hatching of amphibian embryos: the physiological trigger. Science 217: 257–259.CrossRefGoogle Scholar
  42. Ricciardi, A. & J. B. Rasmussen, 1999. Extinction rates of North American freshwater fauna. Conservation Biology 13: 1220–1222.CrossRefGoogle Scholar
  43. Rodriguez-Lara, V., E. Peña-Mirabal, R. Baez-Saldaña, A. L. Esparza-Silva, E. García-Zepeda, M. A. C. Cervantes & T. I. Fortoul, 2014. Estrogen receptor beta and CXCR4/CXCL12 expression: differences by sex and hormonal status in lung adenocarcinoma. Archives of Medical Research 45(2): 158–169.CrossRefGoogle Scholar
  44. Salthe, S. N., 1969. Reproductive modes and the number and size of ova in the urodels. The American Midland Naturalist 81: 467–490.CrossRefGoogle Scholar
  45. Semiltch, R. D., 1987. Interactions between fish and salamander larvae: cost of predator avoidance or competition? Oecologia 72: 481–486.Google Scholar
  46. Simonetti, J. A., 1989. Microhabitat use by small mammals in central Chile. Oikos 56: 309–318.CrossRefGoogle Scholar
  47. Taylor, J., 1983. Orientation and flight behavior of a neotenic salamander (Ambystoma gracile) in Oregon. American Midland Naturalist 109: 40–49.CrossRefGoogle Scholar
  48. Valiente, E., A. H. Tovar, D. Eslava-andoval & L. Zambrano, 2010. Creating refuges for the axolotl (Ambystoma mexicanum). Ecological Restoration 8: 257–265.CrossRefGoogle Scholar
  49. Voss, S., M. Woodcock & L. Zambrano, 2015. A tale of two axolotls. BioScience 65: 1134–1140.Google Scholar
  50. Ward, J. V., 1992. Aquatic insects ecology: biology and habitat. Wiley, New York: 438.Google Scholar
  51. Whitham, J. & A. Mathis, 2000. Effects of hunger and predation risk on foraging behavior of graybelly salamanders, Eurycea multiplicata. Journal of Chemical Ecology 26: 1659–1665.CrossRefGoogle Scholar
  52. Wise, S. & B. Buchanan, 2006. Influence of artificiall ilumination on the nocturnal behavior and physiology of salamanders. In Rich, C. & J. E. Longcore (eds), Ecological consequences of artificial lighting. Island Press, Washington D.C.: 221–251.Google Scholar
  53. Wisenden, B. D., 2000. Olfactory assessment of predation risk in the aquatic environment. Philosophical Transactions of the Royal Society B: Biological Sciences 355: 1205–1208.CrossRefGoogle Scholar
  54. Zambrano, L. & M. Mazari, 2011. Programa de análisis de restauración del sistema lacustre de Xochimilco y del Ajolote. Mexico, D.FGoogle Scholar
  55. Zambrano, L., E. Valiente & M. J. Vander Zanden, 2010. Food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City. Biological Invasions 12: 3061–3069.CrossRefGoogle Scholar
  56. Zambrano, L., H. Cortes & A. Merlo-Galeazzi, 2015. Eat and be eaten: reciprocal predation between axolotls (Ambystoma mexicanum) and crayfish (Cambarellus montezumae) as they grow in size. Marine and Freshwater Behaviour and Physiology 48: 13–23.CrossRefGoogle Scholar
  57. Zermeño, V., C. Ximénez, P. Morán, A. Valadez, O. Valenzuela, E. Rascón & R. Cerritos, 2013. Worldwide genealogy of Entamoeba histolytica: an overview to understand haplotype distribution and infection outcome. Infection, Genetics and Evolution 17: 243–252.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de Zoología, Instituto de BiologíaUniversidad Nacional Autonoma de MexicoMexico CityMexico

Personalised recommendations