Advertisement

From shallow to deep divergences: mixed messages from Amazon Basin cichlids

  • Ana Paula C. Carvalho
  • Rupert A. Collins
  • José Gregório Martínez
  • Izeni P. Farias
  • Tomas Hrbek
ADVANCES IN CICHLID RESEARCH III

Abstract

Cichlids are a conspicuous component of Amazonian ichthyofauna, filling a wide range of niches. Yet taxonomy of many groups is still poorly known in the Amazon, and most of the yet-to-be discovered species are concentrated there. We analyzed 230 individuals sampled from six major Amazonian River Basins representing 56 morpho-species, 34 nominal and 22 undescribed species in 18 cichlid genera. We used four different single-locus species-discovery (SLSD) methods, delimiting between 53 (mPTP) and 57 (GMYC) species/lineages. When detected, species/lineages are hierarchically geographically structured. Many groups such as the Geophaginae and the Cichlinae have recently diversified, and species of genera such as Cichla and Symphysodon hybridize or have a history of hybridization; thus, these species will not be detected by SLSD methods. At the same time, for example, the genera Apistogramma and Biotodoma harbor cryptic species. For all these reasons, species/lineage diversity of Amazonian cichlids is significantly underestimated. The diversity of Amazonian cichlids is particularly remarkable given that the 570 species of Neotropical cichlids, many of which are from the Amazon Basin, are found in just 1.7% of the freshwater aquatic habitat in which the ~ 2,000 species of the East African rift lake cichlids evolved.

Keywords

Cichlidae Cryptic diversity Cytochrome oxidase subunit I COI 

Notes

Acknowledgements

We thank Lúcia Py-Daniel, Jansen Zuanon and the Ichthyology Group (Rafaela Ota, Madoka Ito, Isabela Soares, Douglas Bastos) at INPA for help with specimen identification. This study formed a portion of APCC’s Masters Dissertation in the Genetics, Conservation and Evolutionary Biology Graduate Program INPA/UFAM. Financial support was provided by CNPq Grant No. 575603/2008-9 and CNPq/SISBIOTA-BioPHAM (Grant No. CNPq 563348/2010) to IPF, and CNPq Grant No. 483155/2010-1 and 490682/2010 to TH. APCC received a Graduate Student Fellowship from CNPq, RAC a “science without borders” Postdoctoral Fellowship CNPq Grant No. 400813/2012-2, JGM a COLCIENCIAS Graduate Student Fellowship, and IPF and TH a CNPq Research Productivity Fellowships. Permission to carry out the fieldwork and the collection of tissue samples was granted by IBAMA (License No. 11325-1).

Supplementary material

10750_2018_3790_MOESM1_ESM.csv (3 kb)
Supplementary material 1 (CSV 2 kb)

References

  1. Agostinho, Â. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.CrossRefGoogle Scholar
  2. Akama, A., 2017. Impacts of the hydroelectric power generation over the fish fauna of the Tocantins River, Brazil: Marabá Dam, the final blow. Oecologia Australis 21: 222–231.CrossRefGoogle Scholar
  3. Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.CrossRefGoogle Scholar
  4. Amado, M. V., T. Hrbek & I. P. Farias, 2011. A molecular perspective on systematics, taxonomy and classification Amazonian discus fishes of the genus Symphysodon. International Journal of Evolutionary Biology 2011: 360654.CrossRefGoogle Scholar
  5. April, J., R. L. Mayden, R. H. Hanner & L. Bernatchez, 2011. Genetic calibration of species diversity among North America’s freshwater fishes. Proceedings of the National Academy of Sciences of the United States of America 108: 10602–10607.CrossRefGoogle Scholar
  6. Benzaquem, D. C., C. Oliveira, J. S. da Batista, J. Zuanon & J. I. R. Porto, 2015. DNA barcoding in pencilfishes (Lebiasinidae: Nannostomus) reveals cryptic diversity across the Brazilian Amazon. PLoS ONE 10: e0112217.CrossRefGoogle Scholar
  7. Bleher, H., K. N. Stölting, W. Salzburger & A. Meyer, 2007. Revision of the genus Symphysodon Heckel, 1840 (Teleostei: Perciformes: Cichlidae) based on molecular and morphological characters. Aqua, Journal of Ichthyology and Aquatic Biology 12: 133–174.Google Scholar
  8. Bouckaert, R. R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard, A. Rambaut & A. J. Drummond, 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537.CrossRefGoogle Scholar
  9. Brown, S. D. J., R. A. Collins, S. Boyer, M.-C. Lefort, J. Malumbres-Olarte, C. J. Vink & R. H. Cruickshank, 2012. SPIDER: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources 12: 562–565.CrossRefGoogle Scholar
  10. Burress, E. D., L. Piálek, J. R. Casciotta, A. Almirón, M. Tan, J. W. Armbruster & O. Říčan, 2018. Island- and lake-like parallel adaptive radiations replicated in rivers. Proceedings. Biological Sciences 285: 20171762.CrossRefGoogle Scholar
  11. Castello, L. & M. N. Macedo, 2016. Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990–1007.CrossRefGoogle Scholar
  12. Castello, L., D. G. McGrath, L. L. Hess, M. T. Coe, P. A. Lefebvre, P. Petry, M. N. Macedo, V. F. Renó & C. C. Arantes, 2013. The vulnerability of Amazon freshwater ecosystems. Conservation Letters 6: 217–229.CrossRefGoogle Scholar
  13. Castro Paz, F. P., J. S. da Batista & J. I. R. Porto, 2014. DNA barcodes of rosy tetras and allied species (Characiformes: Characidae: Hyphessobrycon) from the Brazilian Amazon Basin. PLoS ONE 9: e98603.CrossRefGoogle Scholar
  14. Clausen, R. & R. York, 2008. Global biodiversity decline of marine and freshwater fish: a cross-national analysis of economic, demographic, and ecological influences. Social Science Research 37: 1310–1320.CrossRefGoogle Scholar
  15. Colatreli, O. P., N. V. Meliciano, D. Toffoli, I. P. Farias & T. Hrbek, 2012. Deep phylogenetic divergence and lack of taxonomic concordance in species of Astronotus (Cichlidae). International Journal of Evolutionary Biology 2012: 915265.CrossRefGoogle Scholar
  16. Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772.CrossRefGoogle Scholar
  17. de Carvalho, D. C., D. A. A. Oliveira, P. S. Pompeu, C. G. Leal, C. Oliveira & R. Hanner, 2011. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River Basin. Mitochondrial DNA 22(Suppl 1): 80–86.CrossRefGoogle Scholar
  18. de Queiroz, K., 2007. Species concepts and species delimitation. Systematic Biology 56: 879–886.CrossRefGoogle Scholar
  19. Drummond, A. J., B. Ashton, S. Buxton, M. Cheung, A. Cooper, C. Duran, M. Field, J. Heled, M. Kearse, S. Markowitz, R. Moir, S. Stones-Havas, S. Sturrock, T. Thierer & A. C. Wilson, 2014. Geneious v6.1.8. Biomatters, Inc., Auckland [available on internet at http://www.geneious.com/].
  20. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.CrossRefGoogle Scholar
  21. Eschmeyer, W. N., 1998. Catalog of Fishes. California Academy of Sciences Press, San Francisco.Google Scholar
  22. Eschmeyer, W. N. & J. D. Fong, 2018. Species by family/subfamily. CAS: Catalog of Fishes. [available on internet at http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp].
  23. Farias, I. P. & T. Hrbek, 2008. Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon Basin. Molecular Phylogenetics and Evolution 49: 32–43.CrossRefGoogle Scholar
  24. Farias, I. P., J. P. Torrico, C. García-Dávila, M. C. F. da Santos, T. Hrbek & J.-F. Renno, 2010. Are rapids a barrier for floodplain fishes of the Amazon Basin? A demographic study of the keystone floodplain species Colossoma macropomum (Teleostei: Characiformes). Molecular Phylogenetics and Evolution 56: 1129–1135.CrossRefGoogle Scholar
  25. Finer, M. & C. N. Jenkins, 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes–Amazon connectivity. PLoS ONE 7: e35126.CrossRefGoogle Scholar
  26. Fujisawa, T. & T. G. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62: 707–724.CrossRefGoogle Scholar
  27. Henriques, J. M., G. J. C. Silva, F. Y. Ashikaga, R. Hanner, F. Foresti & C. Oliveira, 2015. Use of DNA barcode in the identification of fish species from Ribeira de Iguape Basin and coastal rivers from São Paulo State (Brazil). DNA Barcodes 3: 118–128.CrossRefGoogle Scholar
  28. Hoorn, C., F. P. Wesselingh, H. ter Steege, M. A. Bermudez, A. Mora, J. Sevink, I. Sanmartín, A. Sanchez-Meseguer, C. L. Anderson, J. P. Figueiredo, C. Jaramillo, D. Riff, F. R. Negri, H. Hooghiemstra, J. G. Lundberg, T. Stadler, T. Särkinen & A. Antonelli, 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931.CrossRefGoogle Scholar
  29. Hrbek, T., N. V. Meliciano, J. Zuanon & I. P. Farias, 2018. Remarkable geographic structuring of rheophilic fishes of the lower Araguaia River. Frontiers in Genetics 9: 295.CrossRefGoogle Scholar
  30. Hubert, N. & J.-F. Renno, 2006. Historical biogeography of South American freshwater fishes. Journal of Biogeography 33: 1414–1436.CrossRefGoogle Scholar
  31. Hubert, N., F. Duponchelle, J. Nuñes, C. Garcia Davila, D. Pauly & J.-F. Renno, 2007. Phylogeography of the piranha genera Serrasalmus and Pygocentrus: implications for the diversification of the Neotropical ichthyofauna. Molecular Ecology 16: 2115–2136.CrossRefGoogle Scholar
  32. Hudson, R. R. & J. A. Coyne, 2002. Mathematical consequences of the genealogical species concept. Evolution 56: 1557–1565.CrossRefGoogle Scholar
  33. International Energy Agency, 2013. World Energy Resources – 2013 Survey. International Energy Agency, Paris [available on internet at https://www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdf].
  34. Kapli, P., S. Lutteropp, J. Zhang, K. Kobert, P. Pavlidis, A. Stamatakis & T. Flouri, 2017. Multi-rate Poisson Tree Processes for single-locus species delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 33: 1630–1638.PubMedPubMedCentralGoogle Scholar
  35. Katoh, K. & D. M. Standley, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.CrossRefGoogle Scholar
  36. Kullander, S. O., 2003. Family Cichlidae. In Reis, R. E., S. O. Kullander & C. J. Ferraris (eds), Check List of the Freshwater Fishes of South and Central America. EDIPUCRS, Porto Alegre: 605–654.Google Scholar
  37. Kullander, S. O. & E. J. G. Ferreira, 2006. A review of the South American cichlid genus Cichla, with descriptions of nine new species (Teleostei: Cichlidae). Ichthyological Exploration of Freshwaters 17: 289–398.Google Scholar
  38. Latrubesse, E. M., E. Y. Arima, T. Dunne, E. Park, V. R. Baker, F. M. D’Horta, C. Wight, F. Wittmann, J. Zuanon, P. A. Baker, C. C. Ribas, R. B. Norgaard, N. Filizola, A. Ansar, B. Flyvbjerg & J. C. Stevaux, 2017. Damming the rivers of the Amazon Basin. Nature 546: 363–369.CrossRefGoogle Scholar
  39. Lees, A. C., C. A. Peres, P. M. Fearnside, M. Schneider & J. A. S. Zuanon, 2016. Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation 25: 451–466.CrossRefGoogle Scholar
  40. Machado, V. N., R. A. Collins, R. P. Ota, M. C. Andrade, I. P. Farias & T. Hrbek, 2018. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Scientific Reports 8: 8387.CrossRefGoogle Scholar
  41. Markert, J. A., R. C. Schelly & M. L. J. Stiassny, 2010. Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids. BMC Evolutionary Biology 10: 149.CrossRefGoogle Scholar
  42. Moura, R. L., G. M. Amado-Filho, F. C. Moraes, P. S. Brasileiro, P. S. Salomon, M. M. Mahiques, A. C. Bastos, M. G. Almeida, J. M. Silva, B. F. Araujo, F. P. Brito, T. P. Rangel, B. C. V. Oliveira, R. G. Bahia, R. P. Paranhos, R. J. S. Dias, E. Siegle, A. G. Figueiredo, R. C. Pereira, C. V. Leal, E. Hajdu, N. E. Asp, G. B. Gregoracci, S. Neumann-Leitao, P. L. Yager, R. B. Francini-Filho, A. Froes, M. Campeao, B. S. Silva, A. P. B. Moreira, L. Oliveira, A. C. Soares, L. Araujo, N. L. Oliveira, J. B. Teixeira, R. A. B. Valle, C. Thompson, C. E. Rezende & F. L. Thompson, 2016. An extensive reef system at the Amazon River mouth. Science Advances 2: e1501252.CrossRefGoogle Scholar
  43. Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.CrossRefGoogle Scholar
  44. Pelicice, F. M., V. M. Azevedo-Santos, J. R. S. Vitule, M. L. Orsi, D. P. Lima Junior, A. L. B. Magalhães, P. S. Pompeu, M. Petrere & Â. A. Agostinho, 2017. Neotropical freshwater fishes imperilled by unsustainable policies. Fish and Fisheries 18: 1119–1133.CrossRefGoogle Scholar
  45. Pereira, L. H. G., G. M. G. Maia, R. Hanner, F. Foresti & C. Oliveira, 2011. DNA barcodes discriminate freshwater fishes from the Paraíba do Sul River Basin, São Paulo, Brazil. Mitochondrial DNA 22(Suppl 1): 71–79.CrossRefGoogle Scholar
  46. Pereira, L. H., R. H. Hanner, F. Foresti & C. Oliveira, 2013. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genetics 14: 20.CrossRefGoogle Scholar
  47. Pérez-Miranda, F., O. Mejía, E. Soto-Galera, H. Espinosa-Pérez, L. Piálek & O. Říčan, 2018. Phylogeny and species diversity of the genus Herichthys (Teleostei: Cichlidae). Journal of Zoological Systematics and Evolutionary Research 56: 223–247.CrossRefGoogle Scholar
  48. Piálek, L., O. Říčan, J. R. Casciotta, A. Almirón & J. Zrzavý, 2012. Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: species flocks as a model for sympatric speciation in rivers. Molecular Phylogenetics and Evolution 62: 46–61.CrossRefGoogle Scholar
  49. R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at http://www.r-project.org/].
  50. Rambaut, A., A. J. Drummond & M. A. Suchard, 2013. Tracer v1.6.Google Scholar
  51. Ready, J. S., E. J. G. Ferreira & S. O. Kullander, 2006. Discus fishes: mitochondrial DNA evidence for a phylogeographic barrier in the Amazonian genus Symphysodon (Teleostei: Cichlidae). Journal of Fish Biology 69: 200–211.CrossRefGoogle Scholar
  52. Reid, N. M. & B. C. Carstens, 2012. Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12: 196.CrossRefGoogle Scholar
  53. Reis, R. E., S. O. Kullander & C. J. Ferraris Jr., 2003. Check List of the Freshwater Fishes of South and Central America. EDIPUCRS, Porto Alegre.Google Scholar
  54. Reis, R. E., J. S. Albert, F. Di Dario, M. M. Mincarone, P. Petry & L. A. Rocha, 2016. Fish biodiversity and conservation in South America. Journal of Fish Biology 89: 12–47.CrossRefGoogle Scholar
  55. Ross, H. A., 2014. The incidence of species-level paraphyly in animals: a re-assessment. Molecular Phylogenetics and Evolution 76: 10–17.CrossRefGoogle Scholar
  56. Rossini, B. C., C. A. M. Oliveira, F. A. G. de Melo, V. A. de Bertaco, J. M. D. de Astarloa, J. J. Rosso, F. Foresti & C. Oliveira, 2016. Highlighting Astyanax species diversity through DNA barcoding. PLoS ONE 11: e0167203.CrossRefGoogle Scholar
  57. Roxo, F. F., N. K. Lujan, V. A. Tagliacollo, B. T. Waltz, G. S. C. Silva, C. Oliveira & J. S. Albert, 2017. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLoS ONE 12: e0178240.CrossRefGoogle Scholar
  58. Sambrook, J. & D. Russell, 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  59. Schliep, K. P., 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27: 592–593.CrossRefGoogle Scholar
  60. Shiklomanov, I. A., 1993. World fresh water resources. In Gleick, P. H. (ed.), Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford University Press, Oxford: 13–24.Google Scholar
  61. Sioli, H., 1984. The Amazon and its main affluents: hydrography, morphology of the river courses and river types. In Sioli, H. (ed.), The Amazon. Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin. Springer, New York: 127–165.Google Scholar
  62. Sivasundar, A., E. Bermingham & G. Ortí, 2001. Population structure and biogeography of migratory freshwater fishes (Prochilodus: Characiformes) in major South American rivers. Molecular Ecology 10: 407–417.CrossRefGoogle Scholar
  63. Tougard, C., C. R. García Dávila, U. Römer, F. Duponchelle, F. Cerqueira, E. Paradis, B. Guinand, C. Angulo Chávez, V. Salas, S. Quérouil, S. Sirvas & J.-F. Renno, 2017. Tempo and rates of diversification in the South American cichlid genus Apistogramma (Teleostei: Perciformes: Cichlidae). PLoS ONE 12: e0182618.CrossRefGoogle Scholar
  64. Varella, H. R., J. Zuanon, S. O. Kullander & H. López-Fernández, 2016. Teleocichla preta, a new species of cichlid from the Rio Xingu Basin in Brazil (Teleostei: Cichlidae). Journal of Fish Biology 89: 1551–1569.CrossRefGoogle Scholar
  65. Venticinque, E. M., B. R. Forsberg, B. R. Barthen, P. Petry, L. Hess, A. Mercado, C. Canãs, M. Montoya, C. Durigan & M. Goulding, 2016. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon. Earth System Science Data Discussions.  https://doi.org/10.5194/essd-8-651-2016.CrossRefGoogle Scholar
  66. Werle, E., C. Schneider, M. Renner, M. Völker & W. Fiehn, 1994. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research 22: 4354–4355.CrossRefGoogle Scholar
  67. Willis, S. C., 2017. One species or four? Yes!…and, no. Or, arbitrary assignment of lineages to species obscures the diversification processes of Neotropical fishes. PLoS ONE 12: e0172349.CrossRefGoogle Scholar
  68. Willis, S. C., M. S. Nunes, C. G. Montaña, I. P. Farias & N. R. Lovejoy, 2007. Systematics, biogeography, and evolution of the Neotropical peacock basses Cichla (Perciformes: Cichlidae). Molecular Phylogenetics and Evolution 44: 291–307.CrossRefGoogle Scholar
  69. Willis, S. C., H. López-Fernández, C. G. Montaña, I. P. Farias & G. Ortí, 2012a. Species-level phylogeny of “Satan’s perches” based on discordant gene trees (Teleostei: Cichlidae: Satanoperca Günther 1862). Molecular Phylogenetics and Evolution 63: 798–808.CrossRefGoogle Scholar
  70. Willis, S. C., J. Macrander, I. P. Farias & G. Ortí, 2012b. Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus Cichla) using multi-locus data. BMC Evolutionary Biology 12: 96.CrossRefGoogle Scholar
  71. Willis, S. C., I. P. Farias & G. Ortí, 2014. Testing mitochondrial capture and deep coalescence in Amazonian cichlid fishes (Cichlidae: Cichla). Evolution 68: 256–268.CrossRefGoogle Scholar
  72. Yu, G., D. K. Smith, H. Zhu, Y. Guan & T. T.-Y. Lam, 2017. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8: 28–36.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratório de Evolução e Genética Animal (LEGAL), Departamento de GenéticaUniversidade Federal do AmazonasManausBrazil
  2. 2.School of Biological SciencesUniversity of BristolBristolUK
  3. 3.Laboratório de Proteômica e Genômica, Programa de Pós-graduação em Biotecnologia e Recursos NaturaisUniversidade do Estado do AmazonasManausBrazil
  4. 4.Grupo de Investigación Biociencias, Facultad de Ciencias de la SaludInstitución Universitaria Colegio Mayor de AntioquiaMedellínColombia

Personalised recommendations