, Volume 827, Issue 1, pp 391–404 | Cite as

Biomass across space and tide: architecture of a kelp bed with implications for the abiotic environment

  • Tiffany A. StephensEmail author
  • Matthew J. Desmond
  • Christopher D. Hepburn
Primary Research Paper


The complex, stratified seaweeds within kelp forests provide habitat to a multitude of organisms and can alter the physical and chemical parameters of their surrounding environment. It is unclear, however, how patterns in the architecture of these beds change as the tide ebbs and floods. We investigate biomass distribution of floating and stipitate canopies within a kelp bed during low and high slack tides to determine how biomass interacts with common environmental parameters (nutrients, light, and mass-transfer). Floating canopy biomass remained consistent despite differences in depth, likely driven by an interaction between stipe density and individual biomass. Biomass was distributed inconsistently throughout the water column, in which biomass at the surface roughly doubled at low tide relative to high. Despite an increase in kelp biomass at the surface of the water column during low tide, more light reached the benthos than at high tide, suggesting that seawater optical properties independent of algal canopy better explain light attenuation. Seawater nutrients were consistent throughout the bed. Rates of mass-transfer decreased from the exterior to the interior of the bed and also attenuated with depth. This study highlights the structural complexity of kelp beds and the localized effects on important environmental variables.


Macrocystis Temperate reef Canopy Sub-canopy Light Nutrients Mass-transfer Water motion Tidal cycle Tidal height 



We thank the staff and students of the University of Otago Marine Science Department, the Portobello Marine Laboratory, and Liina Pajusalu for aiding with fieldwork. We also thank those that provided critical reviews of this work, the constructive comments from which strengthened the final product. This work was funded by a University of Otago International Postgraduate Scholarship awarded to TAS, by postgraduate research funding awarded to TAS and MJD, and by supplemental departmental funding provided to CDH.

Supplementary material

10750_2018_3788_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 35 kb)


  1. Arkema, K. K., D. C. Reed & S. C. Schroeter, 2009. Direct and indirect effects of giant kelp determine benthic community structure and dynamics. Ecology 90(11): 3126–3137.CrossRefGoogle Scholar
  2. Barrales, H. L. & C. S. Lobban, 1975. The comparative ecology of Macrocystis pyrifera, with emphasis on the forests of Chubut, Argentina. The Journal of Ecology 63: 657–677.CrossRefGoogle Scholar
  3. Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57: 289–300.Google Scholar
  4. Brady-Campbell, M. M., D. B. Campbell & M. M. Harlin, 1984. Productivity of kelp (Laminaria spp.) near the southern limit in the northwestern Atlantic Ocean. Marine Ecology Progress Series 18(1): 79–88.CrossRefGoogle Scholar
  5. Connell, J. H., 1989. Some processes affecting the species composition in forest gaps. Ecology 70(3): 560–562.CrossRefGoogle Scholar
  6. Dayton, P. K., 1985. Ecology of kelp communities. Annual Review of Ecology and Systematics 16: 215–245.CrossRefGoogle Scholar
  7. Dayton, P. K. & M. J. Tegner, 1984. Catastrophic storms, El Niño, and patch stability in a southern California kelp community. Science 224(4646): 283–285.CrossRefGoogle Scholar
  8. Dayton, P. K., V. Currie, T. Gerrodette, B. D. Keller, R. Rosenthal & D. V. Tresca, 1984. Patch dynamics and stability of some California kelp communities. Ecological Monographs 54(3): 253–289.CrossRefGoogle Scholar
  9. Dayton, P. K., M. J. Tegner, P. E. Parnell & P. B. Edwards, 1992. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecological Monographs 62(3): 421–445.CrossRefGoogle Scholar
  10. Dayton, P. K., M. J. Tegner, P. B. Edwards & K. L. Riser, 1999. Temporal and spatial scales of kelp demography: the role of oceanographic climate. Ecological Monographs 69(2): 219–250.CrossRefGoogle Scholar
  11. Dean, T. A. & F. R. Jacobsen, 1984. Growth of juvenile Macrocystis pyrifera (Laminariales) in relation to environmental factors. Marine Biology 83(3): 301–311.CrossRefGoogle Scholar
  12. Desmond, M. J., D. W. Pritchard & C. D. Hepburn, 2015. Light limitation within southern New Zealand kelp forest communities. PLoS ONE 10(4): e0123676.CrossRefGoogle Scholar
  13. Deysher, L. E. & T. A. Dean, 1986. In situ recruitment of sporophytes of the giant kelp, Macrocystis pyrifera (L.) CA Agardh: effects of physical factors. Journal of Experimental Marine Biology and Ecology 103(1): 41–63.CrossRefGoogle Scholar
  14. Falter, J. L., M. J. Atkinson & C. F. Coimbra, 2005. Effects of surface roughness and oscillatory flow on the dissolution of plaster forms: evidence for nutrient mass transfer to coral reef communities. Limnology and Oceanography 50(1): 246–254.CrossRefGoogle Scholar
  15. Fram, J. P., H. L. Stewart, M. A. Brzezinski, B. Gaylord, D. C. Reed, S. L. Williams & S. MacIntyre, 2008. Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnology and Oceanography 53(4): 1589.CrossRefGoogle Scholar
  16. Gaylord, B., J. H. Rosman, D. C. Reed, J. R. Koseff, J. Fram, S. MacIntyre & S. G. Monismith, 2007. Spatial patterns of flow and their modification within and around a giant kelp forest. Limnology and Oceanography 52(5): 1838–1852.CrossRefGoogle Scholar
  17. Gaylord, B., K. J. Nickols & L. Jurgens, 2012. Roles of transport and mixing processes in kelp forest ecology. The Journal of Experimental Biology 215(6): 997–1007.CrossRefGoogle Scholar
  18. Gerard, V. A., 1984. The light environment in a giant kelp forest: influence of Macrocystis pyrifera on spatial and temporal variability. Marine Biology 84(2): 189–195.CrossRefGoogle Scholar
  19. Goldberg, N. A. & G. A. Kendrick, 2004. Effects of island groups, depth, and exposure to ocean waves on subtidal macroalgal assemblages in the Recherche Archipelago, Western Australia. Journal of Phycology 40(4): 631–641.CrossRefGoogle Scholar
  20. Graham, M. H., J. A. Vasquez & A. H. Buschmann, 2007. Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanography and Marine Biology 45: 39.Google Scholar
  21. Heath, R. A., 1975. Oceanic circulation and hydrology off the southern half of South Island, New Zealand, Vol. 72. New Zealand Oceanographic Institute, Wellington.Google Scholar
  22. Hepburn, C. D., J. D. Holborow, S. R. Wing, R. D. Frew & C. L. Hurd, 2007. Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Marine Ecology Progress Series 339: 99.CrossRefGoogle Scholar
  23. Hurd, C. L., 2000. Water motion, marine macroalgal physiology, and production. Journal of Phycology 36(3): 453–472.CrossRefGoogle Scholar
  24. Irving, A. D. & S. D. Connell, 2006. Predicting understorey structure from the presence and composition of canopies: an assembly rule for marine algae. Oecologia 148(3): 491–502.CrossRefGoogle Scholar
  25. Jackson, G. A. & C. D. Winant, 1983. Effect of a kelp forest on coastal currents. Continental Shelf Research 2(1): 75–80.CrossRefGoogle Scholar
  26. Jokiel, P. L. & J. I. Morrissey, 1993. Water motion on coral reefs: evaluation of the ‘clod card’ technique. Marine Ecology Progress Series 93: 175–181.CrossRefGoogle Scholar
  27. Kain, J. M., 1989. The seasons in the subtidal. British Phycological Journal 24(3): 203–215.CrossRefGoogle Scholar
  28. Long, M. H., J. E. Rheuban, P. Berg & J. C. Zieman, 2012. A comparison and correction of light intensity loggers to photosynthetically active radiation sensors. Limnology and Oceanography: Methods 10(6): 416–424.Google Scholar
  29. Lonsdale, W. M. & A. R. Watkinson, 1982. Light and self-thinning. New Phytologist 90(3): 431–445.CrossRefGoogle Scholar
  30. Lowe, R. J., J. R. Koseff, S. G. Monismith & J. L. Falter, 2005. Oscillatory flow through submerged canopies: 2. Canopy mass transfer. Journal of Geophysical Research: Oceans 110(C10): C10017.CrossRefGoogle Scholar
  31. Mann, K. H., 1972. Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. I. Zonation and biomass of seaweeds. Marine Biology 12(1): 1–10.Google Scholar
  32. North, W. J., 1971. Growth of individual fronds of the mature giant kelp, Macrocystis. Nova hedwigia, Beihefte.Google Scholar
  33. Pearse, J. S. & A. H. Hines, 1979. Expansion of a central California kelp forest following the mass mortality of sea urchins. Marine Biology 51(1): 83–91.CrossRefGoogle Scholar
  34. Porter, E. T., L. P. Sanford & S. E. Suttles, 2000. Gypsum dissolution is not a universal integrator of ‘water motion’. Limnology and Oceanography 45(1): 145–158.CrossRefGoogle Scholar
  35. Reed, D. C. & M. S. Foster, 1984. The effects of canopy shadings on algal recruitment and growth in a giant kelp forest. Ecology 65(3): 937–948.CrossRefGoogle Scholar
  36. Reed, D. C., A. Rassweiler & K. K. Arkema, 2008. Biomass rather than growth rate determines variation in net primary production by giant kelp. Ecology 89(9): 2493–2505.CrossRefGoogle Scholar
  37. Rosman, J. H., S. G. Monismith, M. W. Denny & J. R. Koseff, 2010. Currents and turbulence within a kelp forest (Macrocystis pyrifera): insights from a dynamically scaled laboratory model. Limnology and Oceanography 55(3): 1145.CrossRefGoogle Scholar
  38. Scheffer, M., M. R. de Redelijkheid & F. Noppert, 1992. Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes. Aquatic Botany 42(3): 199–216.CrossRefGoogle Scholar
  39. Schiel, D. R. & M. S. Foster, 1986. The structure of subtidal algal stands in temperate waters. Oceanography and Marine Biology Annual Review 24: 265–307.Google Scholar
  40. Spies, T. A. & J. F. Franklin, 1989. Gap characteristics and vegetation response in coniferous forests of the Pacific Northwest. Ecology 70(3): 543–545.CrossRefGoogle Scholar
  41. Stephens, T. A. & C. D. Hepburn, 2014. Mass-transfer gradients across kelp beds influence Macrocystis pyrifera growth over small spatial scales. Marine Ecology Progress Series 515: 97–109.CrossRefGoogle Scholar
  42. Stewart, H. L. & R. C. Carpenter, 2003. The effects of morphology and water flow on photosynthesis of marine macroalgae. Ecology 84(11): 2999–3012.CrossRefGoogle Scholar
  43. Stewart, H. L., J. P. Fram, D. C. Reed, S. L. Williams, M. A. Brzezinski, S. MacIntyre & B. Gaylord, 2009. Differences in growth, morphology and tissue carbon and nitrogen of Macrocystis pyrifera within and at the outer edge of a giant kelp forest in California, USA. Marine Ecology Progress Series 375: 101–112.CrossRefGoogle Scholar
  44. Wernberg, T., G. A. Kendrick & B. D. Toohey, 2005. Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquatic Ecology 39(4): 419–430.CrossRefGoogle Scholar
  45. Wing, S. R. & M. R. Patterson, 1993. Effects of wave-induced lightflecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile (Phaeophyceae). Marine Biology 116(3): 519–525.CrossRefGoogle Scholar
  46. Wing, S. R., J. J. Leichter & M. W. Denny, 1993. A dynamic model for wave-induced light fluctuations in a kelp forest. Limnology and Oceanography 38(2): 396–407.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksJuneauUSA

Personalised recommendations