, Volume 827, Issue 1, pp 211–224 | Cite as

Breakdown rates and associated nutrient cycling vary between novel crop-derived and natural riparian detritus in aquatic agroecosystems

  • Jason M. TaylorEmail author
  • Richard E. LizotteJr.
  • Sam TestaIII
Primary Research Paper


Freshwater ecosystem function within agricultural landscapes may be altered by differences in processing of organic matter (OM) detritus entering freshwater habitats. We compared litter breakdown rates between crop residues; maize, cotton and soybean, and native riparian species: willow oak, American sycamore and cottonwood from inundated remnant river meander channels located within the Lower Mississippi River Basin (LMRB). Litter breakdown varied among the six species with the highest and lowest breakdown rates represented by crop (\(\bar{X}\) k day−1 = 0.007–0.011) and riparian species (\(\bar{X}\) k day−1 = 0.003–0.005), respectively. OM nutrient concentration varied widely across the six species. OM C:N ratios declined with time for all species except cotton. Temporal patterns in C:P ratios varied among crop residues but initially increased before declining for all three riparian species. Riparian OM breakdown rates were more negatively related to increasing C:N ratios of OM at the end of the study compared to crop species. Historic shifts in landscape-scale OM sources from diverse bottomland tree assemblages to crop residues has likely altered LMRB bayou and oxbow ecosystems by shifting both the timing and lability of OM pulses and decreasing long-term storage of OM, an important habitat and food resource for aquatic communities.


Oxbow lake Bayou Agriculture Agroecosystem Breakdown Crop residue Riparian 



US Department of Agriculture (USDA) Agricultural Research Service-Current Research Information System Funds supported this work. Katelynn Dillard provided significant field and laboratory assistance collecting and processing litter bags. John Massey, Terry Welch, and Duane Shaw conducted routine water-quality collections at field sites. Lisa Brooks and James Hill conducted all nutrient and water-quality laboratory analyses. Lindsey Yasarer and Jeff Back reviewed an earlier version of this manuscript. Mention of any trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. The USDA is an equal opportunity employer and provider.


  1. Allen, A. P., J. F. Gillooly & J. H. Brown, 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 19: 202–213.CrossRefGoogle Scholar
  2. APHA (American Public Health Association), 2005. Standard Methods for the Analysis of Water and Wastewater, 21st ed. American Public Health Association, American Water Works Association, & Water Environment Federation, Washington, DC.Google Scholar
  3. Arrhenius, S., 1915. Quantitative Laws in Biological Chemistry. Bell, London, UK.Google Scholar
  4. Benfield, E. F., 2006. Decomposition of leaf material. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, San Diego: 711–720.Google Scholar
  5. Booker, F. L., 2000. Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton (Gossypium hirsutum L.) leaf and root composition. Plant, Cell & Environment 23: 573–583.CrossRefGoogle Scholar
  6. Booker, F. L., S. A. Prior, H. A. Torbert & S. Hu, 2005. Decomposition of soybean grown under elevated concentrations of CO2 and O3. Global Change Biology 11: 685–698.CrossRefGoogle Scholar
  7. Brown, J., J. Gillooly, A. Allen, V. Savage & G. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRefGoogle Scholar
  8. Burnham, K. P. & D. R. Anderson, 1998. Model Selection and Inference. Springer, Heidelberg, Germany.CrossRefGoogle Scholar
  9. Conant, R. T., R. A. Drijber, M. L. Haddix, W. J. Parton, E. A. Paul, A. F. Plante, J. Six & J. M. Steinweg, 2008. Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology 14: 868–877.CrossRefGoogle Scholar
  10. Dalzell, B. J., T. R. Filley & J. M. Harbor, 2005. Flood pulse influences on terrestrial organic matter export from an agricultural watershed. Journal of Geophysical Research 110: G02011.CrossRefGoogle Scholar
  11. Fernandes, I., S. Seena, C. Pascoal & F. Cássio, 2014. Elevated temperature may intensify the positive effects of nutrients on microbial decomposition in streams. Freshwater Biology 59: 2390–2399.CrossRefGoogle Scholar
  12. Fierer, N., J. M. Craine, K. McLauchlan & J. P. Schimel, 2005. Litter quality and the temperature sensitivity of decomposition. Ecology 86: 320–326.CrossRefGoogle Scholar
  13. Findlay, S., 2010. Stream microbial ecology. Journal of the North American Benthological Society 29: 170–181.CrossRefGoogle Scholar
  14. Follstad Shah, J. J., J. S. Kominoski, M. Ardón, W. K. Dodds, M. O. Gessner, N. A. Griffiths, C. P. Hawkins, S. L. Johnson, A. Lecerf, C. J. Leroy, D. W. P. Manning, A. D. Rosemond, R. L. Sinsabaugh, C. M. Swan, J. R. Webster & L. H. Zeglin, 2017. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology 23: 3064–3075.CrossRefGoogle Scholar
  15. Fuell, A. K., S. A. Entrekin, G. S. Owen & S. K. Owen, 2013. Drivers of leaf decomposition in two wetland types in the Arkansas River Valley, U.S.A. Wetlands 33: 1127–1137.CrossRefGoogle Scholar
  16. Gennet, S., J. Howard, J. Langholz, K. Andrews, M. D. Reynolds & S. A. Morrison, 2013. Farm practices for food safety: an emerging threat to floodplain and riparian ecosystems. Frontiers in Ecology and the Environment 11: 236–242.CrossRefGoogle Scholar
  17. Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology 75: 1807–1817.CrossRefGoogle Scholar
  18. Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.CrossRefGoogle Scholar
  19. Graça, M. A. S., R. C. F. Ferreira & C. N. Coimbra, 2001. Litter processing along a stream gradient: the role of invertebrates and decomposers. Journal of the North American Benthological Society 20: 408–420.CrossRefGoogle Scholar
  20. Griffiths, N. A. & S. D. Tiegs, 2016. Organic-matter decomposition along a temperature gradient in a forested headwater stream. Freshwater Science 35: 518–533.CrossRefGoogle Scholar
  21. Griffiths, N. A., J. L. Tank, T. V. Royer, E. J. Rosi-Marshall, M. R. Whiles, C. P. Chambers, T. C. Frauendorf & M. A. Evans-White, 2009. Rapid decomposition of maize detritus in agricultural headwater streams. Ecological Applications 19: 133–142.CrossRefGoogle Scholar
  22. Griffiths, N. A., J. L. Tank, S. S. Roley & M. L. Stephen, 2012. Decomposition of maize leaves and grasses in restored agricultural streams. Freshwater Science 31: 848–864.CrossRefGoogle Scholar
  23. Gulis, V. & K. Suberkropp, 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48: 123–134.CrossRefGoogle Scholar
  24. Gulis, V., V. Ferreira & M. A. S. Graça, 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology 51: 1655–1669.CrossRefGoogle Scholar
  25. Halvorson, H. M., G. White, J. T. Scott & M. A. Evans-White, 2016. Dietary and taxonomic controls on incorporation of microbial carbon and phosphorus by detritivorous caddisflies. Oecologia 180: 567–579.CrossRefGoogle Scholar
  26. Hanberry, B. B., J. M. Kabrick & H. S. He, 2015. Potential tree and soil carbon storage in a major historical floodplain forest with disrupted ecological function. Perspectives in Plant Ecology, Evolution and Systematics 17: 17–23.CrossRefGoogle Scholar
  27. Jensen, P. D., G. P. Dively, C. M. Swan & W. O. Lamp, 2010. Exposure and nontarget effects of transgenic Bt corn debris in streams. Environmental Entomology 39: 707–714.CrossRefGoogle Scholar
  28. Johnson, B. R. & J. B. Wallace, 2005. Bottom-up limitation of a stream salamander in a detritus-based food web. Canadian Journal of Fisheries and Aquatic Sciences 62: 301–311.CrossRefGoogle Scholar
  29. Kalburtji, K. L. & A. P. Mamolos, 2000. Maize, soybean and sunflower litter dynamics in two physicochemically different soils. Nutrient Cycling in Agroecosystems 57: 195–206.CrossRefGoogle Scholar
  30. Kominoski, J. S., A. D. Rosemond, J. P. Benstead, V. Gulis, J. C. Maerz & D. W. P. Manning, 2015. Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates. Ecological Applications 25: 856–865.CrossRefGoogle Scholar
  31. Lachnicht, S. L., P. F. Hendrix, R. L. Potter, D. C. Coleman & D. A. Crossley Jr., 2004. Winter decomposition of transgenic cotton residue in conventional-till and no-till systems. Applied Soil Ecology 27: 135–142.CrossRefGoogle Scholar
  32. Langhans, S. D. & K. Tockner, 2006. The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147: 501–509.CrossRefGoogle Scholar
  33. Lenth, R, 2016. lsmeans: least-squares means. R Project for Statistical Computing, Vienna, Austria [available from:]
  34. Leroy, C. J. & J. C. Marks, 2006. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology 51: 605–617.CrossRefGoogle Scholar
  35. Locke, M. A., D. D. Tyler & L. A. Gaston, 2010. Soil and water conservation in the Mid-South United States: lessons learned and a look to the future. In Zobeck, T. M. & W. F. Schillinger (eds), Soil and Water Conservation Advances in the United States. Soil Science Society of America, Madison, Wisconsin: 201–236.Google Scholar
  36. McCarty, J. L., S. Korontzi, C. O. Justice & T. Loboda, 2009. The spatial and temporal distribution of crop residue burning in the contiguous United States. Science of the Total Environment 407: 5701–5712.CrossRefGoogle Scholar
  37. Ostrofsky, M. L., 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16: 750–759.CrossRefGoogle Scholar
  38. Paul, M. J., J. L. Meyer & C. A. Couch, 2006. Leaf breakdown in streams differing in catchment land use. Freshwater Biology 51: 1684–1695.CrossRefGoogle Scholar
  39. Peltier, A. J., R. D. Hatfield & C. R. Grau, 2009. Soybean stem lignin concentration relates to resistance to Sclerotinia sclerotiorum. Plant Disease 93: 149–154.CrossRefGoogle Scholar
  40. Peterson, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 345–368.Google Scholar
  41. Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, S. Heisterkamp & B. Van Willigen, 2016. nlme: linear and nonlinear mixed effects models. R Project for Statistical Computing, Vienna, Austria [available from:
  42. Poerschmann, J., A. Gathmann, J. Augustin, U. Langer & T. Górecki, 2005. Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize—characterization of lignin patterns. Journal of Environmental Quality 34: 1508–1518.CrossRefGoogle Scholar
  43. Rosi-Marshall, E. J., J. L. Tank, T. V. Royer, M. R. Whiles, M. Evans-White, C. Chambers, N. A. Griffiths, J. Pokelsek & M. L. Stephen, 2007. Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proceedings of the National Academy of Sciences of the United States of America 104: 16204–16208.CrossRefGoogle Scholar
  44. Royer, T. V. & G. W. Minshall, 2001. Effects of nutrient enrichment and leaf quality on the breakdown of leaves in a hardwater stream. Freshwater Biology 46: 603–610.CrossRefGoogle Scholar
  45. Rueda-Delgado, G., K. M. Wantzen & M. B. Tolosa, 2006. Leaf-litter decomposition in an Amazonian floodplain stream: effects of seasonal hydrological changes. Journal of the North American Benthological Society 25: 233–249.CrossRefGoogle Scholar
  46. Scharnweber, K., J. Syväranta, S. Hilt, M. Brauns, M. J. Vanni, S. Brothers, J. Köhler, J. Knežević-Jarić & T. Mehner, 2014. Whole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes. Ecology 95: 1496–1505.CrossRefGoogle Scholar
  47. Shaftel, R. S., R. S. King & J. A. Back, 2011. Breakdown rates, nutrient concentrations, and macroinvertebrate colonization of bluejoint grass litter in headwater streams of the Kenai Peninsula, Alaska. Journal of the North American Benthological Society 30: 386–398.CrossRefGoogle Scholar
  48. Sharpe, D. M., K. Cromack, W. C. Johnson & B. S. Ausmus, 1980. A regional approach to litter dynamics in Southern Appalachian forests. Canadian Journal of Forest Research 10: 395–404.CrossRefGoogle Scholar
  49. Stelzer, R. S., J. T. Scott & L. A. Bartsch, 2014. Buried particulate organic carbon stimulates denitrification and nitrate retention in stream sediments at the groundwater-surface water interface. Freshwater Science 34: 161–171.CrossRefGoogle Scholar
  50. Swan, C. M., P. D. Jensen, G. P. Dively & W. O. Lamp, 2009. Processing of transgenic crop residues in stream ecosystems. Journal of Applied Ecology 46: 1304–1313.Google Scholar
  51. Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.CrossRefGoogle Scholar
  52. Taylor, J. M., M. J. Vanni & A. S. Flecker, 2015. Top-down and bottom-up interactions in freshwater ecosystems: emerging complexities. In Hanley, T. C. & K. J. La Pierre (eds), Trophic Ecology: Bottom-Up and Top-Down Interactions Across Aquatic and Terrestrial Systems. Cambridge University Press, Cambridge, UK: 55–85.CrossRefGoogle Scholar
  53. Taylor, J. M., R. E. Lizotte Jr., S. Testa III & K. R. Dillard, 2017. Habitat and nutrient enrichment affect decomposition of maize and willow oak detritus in Lower Mississippi River Basin bayous. Freshwater Science 36: 713–725.CrossRefGoogle Scholar
  54. Tockner, K., D. Pennetzdorfer, N. Reiner, F. Schiemer & J. V. Ward, 1999. Hydrological connectivity, and exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshwater Biology 41: 521–535.CrossRefGoogle Scholar
  55. Tundisi, J. G. & T. M. Tundisi, 2012. Limnology. CRC Press, Boca Raton, FL.Google Scholar
  56. United States Department of Agriculture, National Agricultural Statistics Service, 2015. Agricultural Statistics 2015. United States Government Printing Office, Washington, DC.Google Scholar
  57. Ververis, C., K. Georghiou, N. Christodoulakis, P. Santas & R. Santas, 2004. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products 19: 245–254.CrossRefGoogle Scholar
  58. Wait, D. A., C. G. Jones, J. Wynn & F. I. Woodward, 1999. The fraction of expanding to expanded leaves determines the biomass response of Populus to elevated CO2. Oecologia 121: 193–200.CrossRefGoogle Scholar
  59. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.CrossRefGoogle Scholar
  60. Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.CrossRefGoogle Scholar
  61. Yasarer, L. M. W., S. Sinnathamby & B. S. M. Sturm, 2016. Impacts of biofuel-based land-use change on water quality and sustainability in a Kansas watershed. Agricultural Water Management 175: 4–14.CrossRefGoogle Scholar
  62. Yasarer, L. M. W., R. L. Bingner, J. D. Garbrecht, M. A. Locke, R. E. Lizotte Jr., H. G. Momm & P. R. Busteed, 2017. Climate change impacts on runoff, sediment, and nutrient loads in an agricultural watershed in the Lower Mississippi River Basin. Applied Engineering in Agriculture 33: 379–392.CrossRefGoogle Scholar
  63. Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2018

Authors and Affiliations

  1. 1.Water Quality and Ecology Research Unit, National Sedimentation LaboratoryUnited States Department of Agriculture, Agricultural Research ServiceOxfordUSA

Personalised recommendations