, Volume 826, Issue 1, pp 379–393 | Cite as

Extreme drought events can promote homogenization of benthic macroinvertebrate assemblages in a floodplain pond in Brazil

  • Ana Paula dos Santos BertoncinEmail author
  • Gisele Daiane Pinha
  • Matheus Tenório Baumgartner
  • Roger Paulo Mormul
Primary Research Paper


Extreme weathers tend to become frequent following global warming and may promote important changes in species composition. We used benthic macroinvertebrates to test the hypothesis that extreme drought events could lead to local biotic homogenization in a floodplain pond. We took sediment samples in three sampling areas of a floodplain pond during a period of the usual hydrological cycle and during an extreme weather event that caused an atypical hydrological cycle with prolonged drought period. We found that community composition significantly differs between usual hydrological cycle and extreme drought periods, in which only species adapted to unfavorable environmental conditions remained. The spatial beta diversity decreased during the extreme drought periods, presenting lower variability compared to the usual hydrological cycle. However, species density, richness, and diversity increased during the droughts. We expect that, in scenarios of climate change with frequent extreme weathers, droughts may cause permanent negative impacts on aquatic communities, leading to biotic homogenization. Moreover, our findings indicate that prolonged droughts could increase the time needed to community recovery, suggesting lower community resilience to environmental stressors. Therefore, increasing frequency of extreme drought events may result in an alternative community structure.


Biotic similarity Beta diversity Species turnover Floodplain Resilience Climate changes 



The authors are thankful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the former Ministério da Ciência e Tecnologia (MCT) for financial support to the project “Pesquisas Ecológicas de Longa Duração – PELD,” from which data were obtained. ASB and MTB thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship provided. GDP also thank CNPq for the scholarship. RPM thanks CNPq for the productivity grant. We also thank the physics and chemistry laboratory of Nupelia for providing water quality data.

Supplementary material

10750_2018_3756_MOESM1_ESM.xlsx (11 kb)
Supplementary material 1 (XLSX 11 kb). Online Resource 1—Classification of higher taxonomic groups and Chironomidae morphospecies according to their resistance to adverse environmental conditions
10750_2018_3756_MOESM2_ESM.pdf (119 kb)
Supplementary material 2 (PDF 118 kb). Online Resource 2—Temporal trends of density, taxa richness, and Shannon diversity of organisms
10750_2018_3756_MOESM3_ESM.pdf (97 kb)
Supplementary material 3 (PDF 96 kb). Online Resource 3—Temporal trends in average distance to centroid of the Raup-Crick distances (temporal variation of spatial beta diversity) in the reference (R1 = jun/13; R2 = sep/13; R3 = dec/13; R4 = mar/14) and prolonged drought periods (P1 = jun/14; P2 = dec/14; P3 = mar/15; P4 = jun/15; P5 = sep/15)
10750_2018_3756_MOESM4_ESM.pdf (84 kb)
Supplementary material 4 (PDF 83 kb). Online Resource 4—Temporal trends of densities of organisms according to their resistance to adverse environmental conditions


  1. Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.Google Scholar
  2. Alba-Tercedor, J. & A. Sanchez-Ortega, 1988. Un método rápido y simple para evaluar la calidad biológica de las aguas corrientes basado en el de Hellawell (1978). Limnética 4: 51–56.Google Scholar
  3. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. Permanova For Primer: Guide to Software and Statistical Methods. Plymouth, Primer-E Ltd.Google Scholar
  4. Anderson, M. J., T. O. Crist, J. M. Chase, M. Vellend, B. D. Inouye, A. L. Freestone, N. J. Sanders, H. V. Cornell, L. S. Comita, K. F. Davies, S. P. Harrison, N. J. B. Kraft, J. C. Stegen & N. G. Swenson, 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14: 19–28.PubMedGoogle Scholar
  5. Araújo, W. S., T. Tscharntke & M. Almeida-Neto, 2015. Global effects of land use intensity on the impoverishment of insect herbivore assemblages. Biodiversity Conservation 24: 271–285.Google Scholar
  6. Arscott, D. B., S. Larned, M. R. Scarsbrook & P. Lambert, 2010. Aquatic invertebrate community structure along an intermittence gradient: Selwyn River, New Zealand. Journal of the North American Benthological Society 29: 530–545.Google Scholar
  7. Baptista, V. A., M. B. Antunes, A. R. Martello, N. S. B. Figueiredo, A. M. B. Amaral, E. Secretti & B. Braun, 2014. Influence of environmental factors on the distribution of families of aquatic insects in rivers in southern Brazil. Ambiente e Sociedade 17: 153–174.Google Scholar
  8. Barclay, M. H., 1966. An ecological study of a temporary pond near Auckland, New Zealand. Australian Journal of Marine and Freshwater Research 17: 239–258.Google Scholar
  9. Bêche, L. A. & V. H. Resh, 2007. Short-term climatic trends affect the temporal variability of macroinvertebrates in California ‘Mediterranean’ streams. Freshwater Biology 52: 2317–2339.Google Scholar
  10. Bêche, L. A., P. G. Connors, V. H. Resh & A. M. Merenlender, 2009. Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 32: 778–788.Google Scholar
  11. Blettler, M. C. M., M. L. Amsler, I. E. Drago, J. M. Bullo, A. R. Paira, E. E. Drago, L. A. Espinola, L. O. Fontana, E. Eberle & A. Rodrigues-Capítulo, 2014. Long-term morphologic and hydrologic effects on benthic invertebrates in a minor channel of the Paraná River floodplain (Argentina). Ecological Engineering 67: 134–143.Google Scholar
  12. Bond, N. R., P. S. Lake & A. H. Arthington, 2008. The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600: 3–16.Google Scholar
  13. Boulton, A. J., 1989. Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in central Victoria. Transactions of the Royal Society of South Australia 113: 23–34.Google Scholar
  14. Boulton, A. J., 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173–1185.Google Scholar
  15. Boulton, A. J. & P. S. Lake, 1990. The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features. Freshwater Biology 24: 123–141.Google Scholar
  16. Boulton, A. J. & P. S. Lake, 1992. The ecology of two intermittent streams in Victoria, Australia. II. Comparisons of faunal composition between habitats, rivers and years. Freshwater Biology 27: 123–138.Google Scholar
  17. Bozelli, R. L., 1992. Composition of the zooplankton community of Batata and Mussura lakes and the Trombetas River, State of Paraná, Brazil. Amazoniana 12: 239–261.Google Scholar
  18. Bozelli, R. L., S. M. Thomaz, A. A. Padial, P. M. Lopes & L. M. Bini, 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753: 233–241.Google Scholar
  19. Broennimann, O., U. A. Treier, H. Müller-Schärer, W. Thuiller, A. T. Peterson & A. Guisan, 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10: 701–709.PubMedGoogle Scholar
  20. Caruso, B. S., 2002. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. Journal of Hydrology 257: 115–133.Google Scholar
  21. Cayan, D. R., T. Das, D. W. Pierce, T. P. Barnett, M. Tyree & A. Gershunov, 2010. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences 107: 21271–21276.Google Scholar
  22. Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences 104: 17430–17434.Google Scholar
  23. Chase, J. M., N. J. B. Kraft, K. G. Smith, M. Vellend & B. D. Inouye, 2011. Using null models to disentangle variation in community dissimilarity from variation in alpha-diversity. Ecosphere 2: 1–11.Google Scholar
  24. Coster, G., C. Banks-Leite & J. P. Metzger, 2015. Atlantic forest bird communities provide different but not fewer functions after habitat loss. Proceedings of the Royal Society Biological Sciences 282: 2014–2844.Google Scholar
  25. Côté, I. M. & E. S. Darling, 2010. Rethinking ecosystem resilience in the face of climate change. PLoS Biology 8: e1000438.PubMedPubMedCentralGoogle Scholar
  26. Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience 49: 119–127.Google Scholar
  27. Cranston, P. S., 1995. Biogeography. In Armitage, P., L. C. Pinder & P. S. Cranston (eds), The Chironomidae: The Biology and Ecology of Non-biting Midges. Chapman and Hall, Londres: 62–84.Google Scholar
  28. Dai, M., X. Guo, W. Zhai, L. Yuan, B. Wang, L. Wang, P. Cai, T. Tanga & W. J. Cai, 2006. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Marine Chemistry 102: 159–169.Google Scholar
  29. Duncan, J. R. & J. L. Lockwood, 2001. Spatial homogenization of the aquatic fauna of tennessee: extinction and invasion following land use change and habitat alteration. In Lockwood, J. L. & M. L. Mckinney (eds), Biotic Homogenization. Plenum Publishers, New York: 245–258.Google Scholar
  30. Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl & L. O. Mearns, 2000. Climate extremes: observations, modeling, and impacts. Science 289: 2068–2074.PubMedGoogle Scholar
  31. Eletrosul, 1986. Ilha Grande: a vegetação da área de influência do reservatório da Usina Hidrelétrica de Ilha Grande (PR/MS). Florianópolis.Google Scholar
  32. Ellegaard, M. & S. Ribeiro, 2018. The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks’. Biological Reviews 93: 166–183.PubMedGoogle Scholar
  33. Elton, C. S., 1958. The ecology of invasions by animals and plants. University of Chicago Press, Chicago.Google Scholar
  34. Fugi, R., N. S. Hahn & A. A. Agostinho, 1996. Feeding styles of five species of bottom-feeding fishes of the High Paraná River. Environmental Biology of Fishes 46: 297–307.Google Scholar
  35. Gaüzère, P., F. Jiguet & V. Devictor, 2015. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences. Global Change Biology 21: 3367–3378.PubMedGoogle Scholar
  36. Hamilton, S. K. & W. M. Lewis, 1990. Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco River floodplain, Venezuela. Archiv fur Hydrobiologie 119: 393–425.Google Scholar
  37. Hawkins, C. P., H. Mykrä, J. Oksanen & J. J. Vander Laan, 2015. Environmental disturbance can increase beta diversity of stream macroinvertebrate assemblages. Global Ecology and Biogeography 24: 483–494.Google Scholar
  38. Hille, S., E. A. Kristensen, D. Graeber, T. Riis, N. K. Jorgensen & A. Baattrup-Pedersen, 2014. Fast reaction of macroinvertebrate communities to stagnation and drought in streams with contrasting nutrient availability. Freshwater Science 33: 847–859.Google Scholar
  39. Hierro, J. L., J. L. Maron & R. M. Callaway, 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology 93: 5–15.Google Scholar
  40. Iwasaki, Y. & S. J. Ormerod, 2012. Estimating safe concentrations of heavy metals from inter-continental field data on river macroinvertebrates. Environmental Pollution 166: 182–186.PubMedGoogle Scholar
  41. Jacobsen, D., 1998. The effect of organic pollution on the macroinvertebrate fauna of Ecuadorian highland streams. Archiv für Hydrobiologie 143: 179–195.Google Scholar
  42. Jentsch, A. & C. Beierkuhnlein, 2008. Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Comptes Rendus Geoscience 340: 621–628.Google Scholar
  43. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  44. Junqueira, V. M. & S. C. M. Campos, 1998. Adaptation of the “BMWP” method for water quality evaluation to Rio das Velhas watershed (Minas Gerais, Brazil). Acta Limnologica Brasiliensia 10: 125–135.Google Scholar
  45. Kemp, W. M., P. A. Sampou, J. Garber, J. Tuttle & W. R. Boynton, 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology Progress Series 85: 137–152.Google Scholar
  46. Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of North American Benthological Society 19: 573–592.Google Scholar
  47. Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.Google Scholar
  48. Lancaster, J. & A. G. Hildrew, 1993. Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12: 385–393.Google Scholar
  49. Larned, S. T., T. Datry, D. B. Arscott & K. Tockner, 2010. Emerging concepts in temporary-river ecology. Freshwater Biology 55: 717–738.Google Scholar
  50. Ledger, M. E., F. K. Edwards, L. E. Brown, A. M. Milner & G. Woodward, 2011. Impact of simulated drought on ecosystem biomass production: an experimental test in stream mesocosms. Global Change Biology 17: 2288–2297.Google Scholar
  51. Ledger, M. E., L. E. Brown, F. K. Edwards, L. N. Hudson, A. M. Milner & G. Woodward, 2013. Extreme climatic events alter aquatic food webs: a synthesis of evidence from a mesocosm drought experiment. In Woodward, G. & E. J. O’Gorman (eds), Advances in Ecological Research: Global change in Multispecies Systems. Elsevier Academic Press Inc., Londres: 343–395.Google Scholar
  52. Legendre, P. & L. Legendre, 1998. Numerical Ecology: Developments in Environmental Modelling (20), 2nd ed. Elsevier, Amsterdam.Google Scholar
  53. Lindegaard, C., 1995. Classification of water-bodies and pollution. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Non-biting Midges. Springer, Dordrecht: 385–404.Google Scholar
  54. Lytle, D. A., 2000. Biotic and abiotic effects of flash flooding in a montane desert stream. Archiv für Hydrobiologie 150: 85–100.Google Scholar
  55. Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology and Evolution 19: 94–100.PubMedGoogle Scholar
  56. Magalhães, M. F., P. Beja, I. J. Schlosser & M. J. Collares-Pereira, 2007. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshwater Biology 52: 1494–1510.Google Scholar
  57. Magoulick, D. D. & R. M. Kobza, 2003. The role of refugia for fishes during drought: a review and synthesis. Freshwater Biology 48: 1186–1198.Google Scholar
  58. McKinney, M. L. & J. L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14: 450–453.Google Scholar
  59. Mesa, L. M., 2012. Interannual and seasonal variability of macroinvertebrates in monsoonal climate streams. Brazilian Archives of Biology and Technology 55: 403–410.Google Scholar
  60. Milly, P. C. D., K. A. Dunne & A. V. Vecchia, 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438: 347–350.PubMedGoogle Scholar
  61. Moss, B., P. Johnes & G. Phillips, 1996. The monitoring of ecological quality and the classification of standing waters in temperate regions: a review and proposal based on a worked scheme for British waters. Biological Reviews of the Cambridge Philosophical Society 71: 301–339.Google Scholar
  62. Mugnai, R., J. L. Nessimian & D. L. Baptista, 2010. Manual de Identificação de Macroinvertebrados Aquáticos do Estado do Rio de Janeiro. Technical Books, Rio de Janeiro.Google Scholar
  63. Neiff, J. J., 1990. Ideas para la interpretacion ecologica del Parana. Interciencia 15: 424–441.Google Scholar
  64. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2017. Vegan: Community Ecology Package. R package version 2.4-4 [available on internet at].
  65. Olden, J. D., 2006. Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography 33: 2027–2039.Google Scholar
  66. Olden, J. D. & N. L. Poff, 2004. Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas. Ecology 85: 1867–1875.Google Scholar
  67. Olden, J. D. & T. P. Rooney, 2006. On defining and quantifying biotic homogenization. Global Ecology Biogeography 15: 113–120.Google Scholar
  68. Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19: 18–24.PubMedGoogle Scholar
  69. Olden, J. D., J. L. Lockwood & C. L. Parr, 2011. Biological Invasions and the Homogenization of Faunas and Floras. In Whittaker, R. J. & R. J. Ladle (eds), Conservation Biogeography. Wiley, Oxford: 224–243.Google Scholar
  70. Pérez, G. R., 1988. Guía para el estúdio de los Macroinvertebrados acuáticos del Departamento de Antioquia. Editorial Presencia Ltda, Bogotá.Google Scholar
  71. Petsch, D. K., G. D. Pinha & A. M. Takeda, 2017. Dispersal mode and flooding regime as drivers of benthic metacommunity structure in a Neotropical floodplain. Hydrobiologia 788: 131–141.Google Scholar
  72. Pillot, H. K. M. M., 2013. Chironomidae larvae of Netherlands and adjacent lowlands. Biology and Ecology of the aquatic Orthocladiinae. Prodiamesinae - Diamesinae - Buchonomyiinae - Podonominae – Telmatogetoninae. KNNV Publishing, Zeist.Google Scholar
  73. Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104: 5732–5737.Google Scholar
  74. R Development Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  75. Rao, C., 1964. The Use and Interpretation of Principal Component Analysis in Applied Research. Sankhyā: The Indian Journal of Statistics Series A (1961–2002) 26: 329–358.Google Scholar
  76. Scheffer, M. & S. R. Carpenter, 2003. Catastrophic shifts in ecosystems: linking theory to observations. Trends in Ecology & Evolution 18: 648–656.Google Scholar
  77. Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.PubMedGoogle Scholar
  78. Seneviratne, S. I., N. Nicholls, D. Easterling, C. M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera & X. Zhang, 2012. Changes in climate extremes and their impacts on the natural physical environment. In Field, C. B., V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G. K. PLattner, S. K. Allen, M. Tignor & P. M. Midgley (eds), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge: 109–230.Google Scholar
  79. Serra, S. R. Q., F. Cobo, M. A. S. Graça, S. Dolédec & M. J. Feio, 2016. Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecological Indicators 61: 282–292.Google Scholar
  80. Smart, S., K. Thompson, R. H. Marrs, M. G. Le Duc, L. C. Maskell & L. G. Firbank, 2006. Biotic homogenization and changes in species diversity across human-modified ecosystems. Proceedings of the Biological Royal Society 273: 2659–2665.Google Scholar
  81. Sponseller, R. A., N. B. Grimm, A. J. Boulton & J. L. Sabo, 2010. Responses of macroinvertebrate communities to long-term flow variability in a Sonoran Desert stream. Global Change Biology 16: 2891–2900.Google Scholar
  82. Thomaz, S. M., T. A. Pagioro, L. M. Bini, M. C. Roberto & R. R. A. Rocha, 2004. Limnology of the upper Paraná floodplain habitats: patterns of spatiotemporal variations and influence of the water levels. In Agostinho, A. A., L. Rodrigues, L. C. Gomes, S. M. Thomaz & L. E. Miranda (eds), Structure and Functioning of the Paraná River and Its Floodplain: LTER – Site 6 – (PELD – Sítio 6). Eduem, Maringá: 37–41.Google Scholar
  83. Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.Google Scholar
  84. Trivinho-Strixino, S., 2011. Larvas de Chironomidae. Guia de Identificação. Hidrobiologia/Lab. Entomologia Aquática/UFSCar, São Carlos.Google Scholar
  85. Van Geest, G. J., H. Coops, M. Scheffer & E. H. Van Nes, 2007. Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels. Ecosystems 10: 36–46.Google Scholar
  86. Veech, J. A. & T. O. Crist, 2007. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography 16: 650–656.Google Scholar
  87. Watson, R. T., M. C. Zinyowera & R. H. Moss, 1998. The Regional Impact of Climate Change: an Assessment of Vulnerability. Cambridge University Press, Cambridge.Google Scholar
  88. Wilhm, J. L. & T. C. Dorris, 1968. Biological parameters for water quality criteria. BioScience 18: 477–481.Google Scholar
  89. Williams, D. D., 1987. The Ecology of Temporary Waters. Timber Press, Portland.Google Scholar
  90. Williams, D. D., 1996. Environmental constraints in temporary fresh waters and their consequences for the insect fauna. Journal of the North American Benthological Society 15: 634–650.Google Scholar
  91. Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341.Google Scholar
  92. Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B 365: 2093–2106.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018
corrected publication October 2018

Authors and Affiliations

  • Ana Paula dos Santos Bertoncin
    • 1
    Email author
  • Gisele Daiane Pinha
    • 1
  • Matheus Tenório Baumgartner
    • 1
  • Roger Paulo Mormul
    • 1
    • 2
  1. 1.Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA) Universidade Estadual de Maringá (UEM)MaringáBrazil
  2. 2.Departamento de Biologia (DBI), Centro de Ciências Biológicas (CCB)Universidade Estadual de Maringá (UEM)MaringáBrazil

Personalised recommendations