Advertisement

Hydrobiologia

, Volume 829, Issue 1, pp 125–132 | Cite as

Remote sensing application for the study of rapid flushing to remediate eutrophication in shallow lagoons (Albufera of Valencia)

  • Xavier Sòria-PerpinyàEmail author
  • Maria R. Miracle
  • Juan Soria
  • Jesús Delegido
  • Eduardo Vicente
SHALLOW LAKES RESEARCH

Abstract

Albufera of Valencia shallow lagoon experiences water clarification about once a year. This study aimed to observe the timing of water clarity events and to detect the associated flow during these periods. Spatial variation in chlorophyll a along the Albufera was observed using remote sensing images. Due to the lagoon’s spatial complexity and the varying water qualities flowing in from more than 60 tributaries, remote sensing was the only approach that could obtain images simultaneously covering the entire lagoon. The data were used to explore the evolution, duration and intensity of the clear-water phase, and the lagoon’s subsequent re-eutrophication. The duration and intensity of the clear-water phase varied across the lagoon, but complete water quality renovation occurred in 1 week. Our analysis demonstrates that rapid flushing could remediate the lagoon eutrophication.

Keywords

Eutrophication Residence time Management policy Remote sensing Landsat 

Notes

Acknowledgements

This study was partially supported by the GVPROMETEO 2016-132 project from Generalitat Valenciana.

References

  1. Doña, C., J. M. Sánchez, V. Caselles, J. A. Domínguez & A. Camacho, 2014. Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7: 1632–1641.CrossRefGoogle Scholar
  2. Dumont, H. J. & G. M. El-Shabrawy, 2007. Lake Borullus of the Nile Delta: a short history and an uncertain future. AMBIO 36: 677–682.CrossRefGoogle Scholar
  3. Elliott, J. A., I. D. Jones & T. Page, 2009. The importance of nutrient source in determining the influence of retention time on phytoplankton: an explorative modelling study of a naturally well-flushed lake. Hydrobiologia 627: 129–142.CrossRefGoogle Scholar
  4. Jeffrey, S. T. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.CrossRefGoogle Scholar
  5. Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice Hall, Upper Saddle River.Google Scholar
  6. Lopez Garcia, M. J. & V. Caselles, 1990. A multi-temporal study of chlorophyll-a concentration in the Albufera lagoon of Valencia, Spain, using Thematic Mapper data. International Journal of Remote Sensing 11: 301–311.CrossRefGoogle Scholar
  7. Miracle, M. R. & M. Sahuquillo, 2002. Changes of life-history traits and size in Daphnia magna during a clear-water phase in a hypertrophic lagoon (Albufera of Valencia, Spain). Verhandlungen des Internationalen Verein Limnologie 28: 1203–1208.Google Scholar
  8. Onandia, G., M. R. Miracle & E. Vicente, 2014. Primary production under hypertrophic conditions and its relationship with bacterial production. Aquatic Ecology 48: 447–463.CrossRefGoogle Scholar
  9. Onandia, G., J. D. Dias & M. R. Miracle, 2015a. Zooplankton grazing on natural algae and bacteria under hypertrophic conditions. Limnetica 34: 541–560.Google Scholar
  10. Onandia, G., A. Gudimov, M. R. Miracle & G. Arhonditsis, 2015b. Towards the development of a biogeochemical model for addressing the eutrophication problems in the shallow hypertrophic lagoon of Albufera de Valencia, Spain. Ecological Informatics 26: 70–89.CrossRefGoogle Scholar
  11. Padisák, J., J. Köhler & S. Hoeg, 1999. The effect of changing flushing rates on development of late summer Aphanizomenon and Microcystis populations in a shallow lake, Müggelsee, Berlin, Germany. In Tundisi, G. & M. Sraskraba (eds), Theoretical Reservoir Ecology and its Applications. International Institute of Ecology, Brazilian Academy of Sciences & Backhuys, Leiden: 411–423.Google Scholar
  12. Reynolds, C. S. & J. W. G. Lund, 1987. The phytoplankton of an enriched, soft-water lake subject to intermittent hydraulic flushing (Grasmere, English Lake District). Freshwater Biology 19: 379–404.CrossRefGoogle Scholar
  13. Reynolds, C. S., S. C. Maberly, J. E. Parker & M. M. De Ville, 2012. Forty years of monitoring water quality in Grasmere (English Lake District): separating the effects of enrichment by treated sewage and hydraulic flushing on phytoplankton ecology. Freshwater Biology 57: 384–399.CrossRefGoogle Scholar
  14. Romo, S., M. J. Villena, M. Sahuquillo, J. M. Soria, M. Gimenez, T. Alfonso, E. Vicente & M. R. Miracle, 2005. Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as in northern shallow lakes? Freshwater Biology 50: 1706–1717.CrossRefGoogle Scholar
  15. Romo, S., A. García-Murcia, M. J. Villena, V. Sánchez & A. Ballester, 2008. Tendencias del fitoplancton en el lago de la Albufera de Valencia e implicaciones para su ecología, gestión y recuperación. Limnetica 27: 11–28.Google Scholar
  16. Sahuquillo, M., M. Melão & M. R. Miracle, 2007. Low filtering rates of Daphnia magna in a hypertrophic lake: laboratory and in situ experiments using synthetic microspheres. Hydrobiologia 594: 141–152.CrossRefGoogle Scholar
  17. Scheffer, M., 1998. Ecology of Shallow Lakes: Population and Community Biology Series 22. Kluwer Academic Publishers, Dordrecht.Google Scholar
  18. Scheffer, M., H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 260–262.CrossRefGoogle Scholar
  19. Shoaf, W. T. & B. W. Lium, 1976. Improved extraction of chlorophyll a and b from algae using dimethyl sulphoxide. Limnology and Oceanography 21: 926–928.CrossRefGoogle Scholar
  20. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  21. Soria, J. M., 2006. Past, present and future of la Albufera of Valencia Natural Park. Limnetica 25: 135–142.Google Scholar
  22. Soria, J. M., S. Romo, T. Aledón, J. F. Izquierdo & S. Calvo, 2015. Estudio de la inundación otoñal en el Parque Natural de la Albufera de Valencia mediante imágenes de Landsat. In Proceedings of the XVI Congreso de la Asociación Española de Teledetección. Estación Biológica de Doñana (Sevilla, Spain): 370–373.Google Scholar
  23. Vicente, E. & M. R. Miracle, 1992. The coastal lagoon Albufera de Valencia: an ecosystem under stress. Limnetica 8: 87–100.Google Scholar
  24. Zhou, W., S. Wang & Y. Zhou, 2004. Determination of chlorophyll a content of the Lake Taihu, China using Landsat-5 TM data. Proceedings of IEEE-International Geoscience and Remote Sensing Symposium. September 20–24, 2004. Anchorage, AK, USA: 4893–4896.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE)University of ValènciaPaternaSpain
  2. 2.Image Processing Laboratory (IPL)University of ValenciaPaternaSpain

Personalised recommendations