, Volume 829, Issue 1, pp 113–124 | Cite as

Why are Lake Abaya and Lake Chamo so different? A limnological comparison of two neighboring major Ethiopian Rift Valley lakes

  • Fassil E. Teffera
  • Pieter LemmensEmail author
  • Arne Deriemaecker
  • Jozef Deckers
  • Hans Bauer
  • Feleke W. Gamo
  • Luc Brendonck
  • Luc De Meester


Lake Abaya and Lake Chamo are the two largest Ethiopian Rift Valley lakes; they are located close to each other, but have a strikingly different water transparency. We explain key differences in the structure and the functioning of the food web with variation in limnological variables and major pelagic food web compartments within and across both lakes. Data from a detailed comparative investigation of physical and chemical variables and zooplankton community characteristics during the wet and dry season from two consecutive years revealed major differences in key limnological variables between Lake Abaya and Lake Chamo. The most pronounced differences were related to water transparency and the amount of suspended solids in the water column. Lake Abaya is much more turbid, has lower phyto- and zooplankton biomass, and has considerably lower primary production than Lake Chamo. Based on our results, we infer that the profound differences in food web structure between both lakes probably result from differences in sediment load. Finally, our results indicate that conservation programs should focus on reducing sediment inflow from the catchments into the lakes.


Lake Abaya Lake Chamo Limnology Water transparency Suspended solids Primary production Phytoplankton Zooplankton 



This study is part of a collaborative research project “Land and water Research for Sustainable Livelihood in the South Ethiopian Rift Valley” between Arba Minch University in Ethiopia and KU Leuven in Belgium. The authors wish to acknowledge VLIR-OI and VLIR-UOS for the financial support of this research. We sincerely thank Arba Minch University and the KU Leuven Laboratory of Aquatic Ecology, Evolution and Conservation and the Division of Soil and Water Management for facilitating field work and follow-up analyses. The authors gratefully acknowledge Ethiopian Wildlife Conservation Authority and Nechisar National Park for providing us the study license in protected area of the lakes.

Supplementary material

10750_2018_3707_MOESM1_ESM.docx (121 kb)
Supplementary material 1 (DOCX 120 kb)


  1. Alemayehu, H. M. & A. J. S. Raju, 2015. Towards sustainable management of Ethiopia’s Lake Chamo biodiversity resources: a geo-spatial supported approach. In Oku, E. E. & K. O. Asubonteng (eds), Harnessing Land and Water Resources for Improved Food Security and Ecosystem Services in Africa. United Nations University Institute for Natural Resources, Accra.Google Scholar
  2. Aloo, P., 2002. Effects of Climate and Human Activities on the Ecosystem of Lake Baringo, Kenya. The East African Great Lakes: Limnology, Palaeolimnology and Biodiversity. Springer, New York: 335–347.CrossRefGoogle Scholar
  3. Awulachew, S. B., 2006a. Investigation of physical and bathymetric characteristics of Lakes Abaya and Chamo, Ethiopia, and their management implications. Lakes & Reservoirs: Research & Management 11(3): 133–140.CrossRefGoogle Scholar
  4. Awulachew, S. B., 2006b. Modelling natural conditions and impacts of consumptive water use and sedimentation of Lake Abaya and Lake Chamo, Ethiopia. Lakes & Reservoirs: Research & Management 11(2): 73–82.CrossRefGoogle Scholar
  5. Ayenew, T., 2007. Water management problems in the Ethiopian rift: challenges for development. Journal of African Earth Sciences 48(2): 222–236.CrossRefGoogle Scholar
  6. Ayenew, T. & D. Legesse, 2007. The changing face of the Ethiopian rift lakes and their environs: call of the time. Lakes & Reservoirs: Research & Management 12(3): 149–165.CrossRefGoogle Scholar
  7. Baxter, R., 2002. Ethiopian Rift Valley Lakes, Biology of Inland Waters. Backhuys, Leiden.Google Scholar
  8. Belay, A. & R. Wood, 1982. Limnological aspects of an algal bloom on Lake Chamo in Gamo Goffa administrative region of Ethiopia in 1978. Ethiopian Journal of Science 5: 1–19.Google Scholar
  9. Belay, K. & D. Abebaw, 2004. Challenges facing agricultural extension agents: a case study from South Western Ethiopia. African Development Review 16(1): 139–168.CrossRefGoogle Scholar
  10. Belay, K. T., A. Van Rompaey, J. Poesen, S. Van Bruyssel, J. Deckers & K. Amare, 2015. Spatial analysis of land cover changes in Eastern Tigray (Ethiopia) from 1965 to 2007: are there signs of a forest transition? Land Degradation & Development 26(7): 680–689.CrossRefGoogle Scholar
  11. Belete, A., L. Beccaluva, G. Bianchini, N. Colombani, M. Fazzini, C. Marchina, C. Natali & T. Rango, 2015. Water–rock interaction and lake hydrochemistry in the Main Ethiopian Rift. In Billi, P. (ed.), Landscapes and Landforms of Ethiopia. Springer, Dordrecht: 307–321.Google Scholar
  12. Bottrell, H., A. Duncan, Z. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 416–456.Google Scholar
  13. Bouillon, S., R. M. Connolly & D. Gillikin, 2011. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. Treatise on Estuarine and Coastal Science. 7: 143–173.CrossRefGoogle Scholar
  14. Boxshall, G. A. & S. H. Halsey, 2004. An Introduction to Copepod Diversity. The Ray Society, London.Google Scholar
  15. Dauchez, S., L. Legendre & L. Fortier, 1995. Assessment of simultaneous uptake of nitrogenous nutrients (15N) and inorganic carbon (13C) by natural phytoplankton populations. Marine Biology 123(4): 651–666.CrossRefGoogle Scholar
  16. Dejen, E., J. Vijverberg, L. A. Nagelkerke & F. A. Sibbing, 2004. Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia). Hydrobiologia 513(1–3): 39–49.CrossRefGoogle Scholar
  17. Dejen, E., W. Anteneh & J. Vijverberg, 2017. The decline of the Lake Tana (Ethiopia) fisheries: causes and possible solutions. Land Degradation & Development 28(6): 1842–1851.CrossRefGoogle Scholar
  18. Donohue, I. & J. Garcia Molinos, 2009. Impacts of increased sediment loads on the ecology of lakes. Biological Reviews 84(4): 517–531.CrossRefGoogle Scholar
  19. Ekholm, P., K. Kallio, S. Salo, O.-P. Pietiläinen, S. Rekolainen, Y. Laine & M. Joukola, 2000. Relationship between catchment characteristics and nutrient concentrations in an agricultural river system. Water Research 34(15): 3709–3716.CrossRefGoogle Scholar
  20. Flössner, D., 2000. Die Haplopoda und Cladocera Mitteleuropas. Backhuys Publishers, Leiden.Google Scholar
  21. Gebremariam, B., 2007. Basin Scale Sedimentary and Water Quality Responses to External Forcing in Lake Abaya, Southern Ethiopian Rift Valley. Universität Siegen, Siegen.Google Scholar
  22. Golubtsov, A. S. & R. Habteselassie, 2010. Fish faunas of the Chamo-Abaya and Chew Bahir basins in southern portion of the Ethiopian Rift Valley: origin and prospects for survival. Aquatic Ecosystem Health & Management 13(1): 47–55.CrossRefGoogle Scholar
  23. Hart, R., 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid reservoir. Freshwater Biology 19(1): 123–139.CrossRefGoogle Scholar
  24. Hecky, R. E., H. A. Bootsma & M. L. Kingdon, 2003. Impact of land use on sediment and nutrient yields to Lake Malawi/Nyasa (Africa). Journal of Great Lakes Research 29: 139–158.CrossRefGoogle Scholar
  25. Kassawmar, N. T., K. R. M. Rao & G. L. Abraha, 2011. An integrated approach for spatio-temporal variability analysis of wetlands: a case study of Abaya and Chamo lakes, Ethiopia. Environmental Monitoring and Assessment 180(1–4): 313–324.CrossRefGoogle Scholar
  26. Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.CrossRefGoogle Scholar
  27. Korinek, V., 1999. A guide to the limnetic Cladocera in African inland lakes (Crustacea, Branchiopoda). Stuttgart, Germany.Google Scholar
  28. Koroleff, F., 1970. Determination of total phosphorus in natural waters by means of persulphate oxidation Interlaboratory report No 3, Vol 3. Le Conseil International pour l’exploration de la mer.Google Scholar
  29. Lemmens, P., F. E. Teffera, M. Wynants, L. Govaert, S. Deckers, H. Bauer, F. Woldeyes, L. Brendonck, S. Bouillon & L. De Meester, 2017. Intra-and interspecific niche variation as reconstructed from stable isotopes in two ecologically different Ethiopian Rift Valley lakes. Functional Ecology 31(7): 1482–1492.CrossRefGoogle Scholar
  30. Lougheed, V. L. & P. Chow-Fraser, 1998. Factors that regulate the zooplankton community structure of a turbid, hypereutrophic Great Lakes wetland. Canadian Journal of Fisheries and Aquatic Sciences 55(1): 150–161.CrossRefGoogle Scholar
  31. Makin, M., T. Kingham, A. Waddams, C. Birchall & T. Teferra, 1975. Development prospects in the Southern Rift Valley, Ethiopia. Land Resource Study, Land Resources Division, Ministry of Overseas Development, UK (21).Google Scholar
  32. Meshesha, D. T., A. Tsunekawa & M. Tsubo, 2012. Continuing land degradation: cause-effect in Ethiopia’s Central Rift Valley. Land Degradation & Development 23(2): 130–143.CrossRefGoogle Scholar
  33. Oksanen, J., F. Blanchet, R. Kindt, P. Legendre, R. O’Hara, G. Simpson, P. Solymos, M. Stevens & H. Wagner, 2010. Vegan: Community Ecology Package. R package version 1.17-1. R package version: 1.17-6.Google Scholar
  34. Pimentel, D., C. Harvey, P. Resosudarmo, K. Sinclair, D. Kurz, M. McNair, S. Crist, L. Shpritz, L. Fitton & R. Saffouri, 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267(5201): 1117–1123.CrossRefGoogle Scholar
  35. R Development Core Team, 2013. R: a language and environment for statistical computing. In R Foundation for Statistical Computing.
  36. Scheffer, M., 2004. Ecology of Shallow Lakes. Chapman and Hall, London.CrossRefGoogle Scholar
  37. Schröder, R., 1984. An attempt to estimate the fish stock and the sustainable yield of Lake Ziway and lake Abaya, Ethiopian Rift Valley. Archiv für Hydrobiologie Supplementband Monographische Beiträge 69(3): 411–441.Google Scholar
  38. Schutt, B. & S. Thiemann, 2006. Kulfo River, South-Ethiopia as the regulator of lake level changes in the Lake Abaya-Lake Chamo system. Zentralblatt für Geologie und Paläontologie 1: 129–143.Google Scholar
  39. Teffera, F. E., P. Lemmens, A. Deriemaecker, L. Brendonck, S. Dondeyne, J. Deckers, H. Bauer, F. W. Gamo & L. De Meester, 2017. A call to action: strong long-term limnological changes in the two largest Ethiopian Rift Valley lakes, Abaya and Chamo. Inland Waters 7: 129–137.CrossRefGoogle Scholar
  40. Tekelemariam, A. & B. Wenclawiak, Water quality monitoring within Abaya and Chamo drainage basin. In: Lake Abaya Research Symposium Proceedings: 109–116.Google Scholar
  41. Teklemariam, A. T., 2005. Water Quality Monitoring in Lake Abaya and Lake Chamo Region. University of Siegen, Siegen.Google Scholar
  42. Vijverberg, J., E. Dejen, A. Getahun & L. A. Nagelkerke, 2012. The composition of fish communities of nine Ethiopian lakes along a north-south gradient: threats and possible solutions. Animal Biology 62(3): 315–335.CrossRefGoogle Scholar
  43. Vijverberg, J., E. Dejen, A. Getahun & L. J. Nagelkerke, 2014. Zooplankton, fish communities and the role of planktivory in nine Ethiopian lakes. Hydrobiologia 722(1): 45–60.CrossRefGoogle Scholar
  44. Wagesho, N., 2014. Catchment dynamics and its impact on runoff generation: coupling watershed modelling and statistical analysis to detect catchment responses. International Journal of Water Resources and Environmental Engineering 6(2): 73–87.CrossRefGoogle Scholar
  45. Willén, E., G. Ahlgren, G. Tilahun, L. Spoof, M.-R. Neffling & J. Meriluoto, 2011. Cyanotoxin production in seven Ethiopian Rift Valley lakes. Inland Waters 1(2): 81–91.CrossRefGoogle Scholar
  46. Zinabu, G., E. Kebede-Westhead & Z. Desta, 2002. Long-term changes in chemical features of waters of seven Ethiopian Rift-Valley lakes. Hydrobiologia 477(1–3): 81–91.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Biology DepartmentArba Minch UniversityArba MinchEthiopia
  2. 2.Laboratory of Aquatic Ecology Evolution & ConservationKU LeuvenLouvainBelgium
  3. 3.Division of Soil and Water ManagementKU LeuvenLouvainBelgium
  4. 4.Wildlife Conservation Research Unit, Recanati-Kaplan CentreUniversity of OxfordTubneyUK

Personalised recommendations