Advertisement

Both lake regime and fish introduction shape autotrophic planktonic communities of lakes from the Patagonian Plateau (Argentina)

  • Juan Francisco Saad
  • Sol Porcel
  • Julio Lancelotti
  • Inés O’Farrell
  • Irina Izaguirre
PHYTOPLANKTON & BIOTIC INTERACTIONS
  • 40 Downloads

Abstract

Strobel Plateau hosts more than 1,500 shallow lakes displaying different water regimes, which constitute the habitat for many species. Although the region is naturally fishless, many of the lakes were stocked with trout, bearing uncertainty about the possible effects on the ecosystem. The main objective of this study was to analyze the characteristics of planktonic autotrophic communities of lakes differing in regime (phytoplankton turbid, clear vegetated, and clear unvegetated) and presence/absence of fish. During late spring and summer, 14 water bodies were sampled in 2011 and 2013 considering different regimes and presence/absence of fish. Besides limnological variables, the autotrophic communities, from pico to microplankton, were also analyzed. Differences in physical and chemical characteristics observed among the lakes corresponded to their current regime and the presence/absence of trouts. Autotrophic picoplankton and phytoplankton > 20 µm abundances differed among lake types being highest in fish-stocked lakes. Although the three type of lakes presented phycoerythrin-rich picocyanobacteria and picoeukaryotes, only fish-stocked lakes hosted phycocyanin-rich picocyanobacteria. Moreover, fish-stocked lakes were dominated by cyanobacteria, while chlorophytes abounded in fishless systems. Evidences that lake regime and fish occurrence influence planktonic autotrophic communities of Strobel plateau is here provided, highlighting the intra- and interannual dynamism of the aquatic systems.

Keywords

Phytoplankton Shallow lakes Strobel Plateau Top-down Bottom-up Trout Fish-stocked lakes Fishless lakes 

Notes

Acknowledgements

We thank Lic. Cristina Marinone, Dr. Ignacio Roesler, and Dr. Rodrigo Sinistro for their collaboration during the field campaigns. Also special thanks to the people of “Estancia Laguna Verde” for the lodging and collaboration on the logistics during the campaigns. This investigation was supported by a grant of the Argentinean Fund for Technical and Scientific Investigation (FONCYT, PICT 0794).

References

  1. Abell, J. M., D. Özkundakci, D. P. Hamilton & J. R. Jones, 2012. Latitudinal variation in nutrient stoichiometry and chlorophyll-nutrient relationships in lakes: a global study. Fundamental and Applied Limnology 181: 1–14.CrossRefGoogle Scholar
  2. Anderson, T. W., M. A. Tiffany & S. H. Hurlbert, 2007. Stratification, sulfide, worms, and decline of the Eared Grebe (Podiceps nigricollis) at the Salton Sea, California. Lake and Reservoir Management 23(5): 500–517.CrossRefGoogle Scholar
  3. Bartozek, E. C. R., N. C. Bueno, A. Feiden & L. C. Rodrigues, 2016. Response of phytoplankton to an experimental fish culture in net cages in a subtropical reservoir. Brazilian Journal of Biology 76(4): 824–833.CrossRefGoogle Scholar
  4. Blanco, S., 2001. Estudio Experimental sobre la Influencia de los Nutrientes en la Ecología Trófica de los Peces de una Laguna Somera. M Sc Thesis, Universidad de León.Google Scholar
  5. Blanco, S., M. Fernández-Aláez & E. Bécares, 2008. Efficiency of top-down control depends on nutrient concentration in a Mediterranean shallow lake: a mesocosm study. Marine and Freshwater Research 59: 922–930.CrossRefGoogle Scholar
  6. Blindow, I., G. Andersson, A. Hargeby & F. Johansson, 1993. Long-term patterns of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.CrossRefGoogle Scholar
  7. Borics, G., B. Tóthmérész, B. A. Lukács & G. Várbíró, 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698: 251–262.CrossRefGoogle Scholar
  8. Brinson, M. M. & A. I. Malvárez, 2002. Temperate freshwater wetlands: types, status and threats. Wetlands 29(2): 115–133.Google Scholar
  9. Carpenter, S. R., J. F. Kitchell & J. R. Hodgsdon, 1985. Cascading trophic interaction and lake ecosystem productivity. BioScience 35: 635–639.CrossRefGoogle Scholar
  10. Carmichael, W. W. & R. H. Li, 2006. Cyanobacteria toxins in the Salton Sea. Saline Systems 2: 5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. de Tezanos Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.CrossRefGoogle Scholar
  12. Díaz, M., F. Pedrozo & N. Baccala, 2000. Summer classification of southern hemisphere temperate lakes (Patagonia, Argentina). Lakes and Reservoirs: Research and Management 5: 213–229.CrossRefGoogle Scholar
  13. Duarte, C. M. & L. Kalff, 1986. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnology and Oceanography 31(5): 1072–1080.CrossRefGoogle Scholar
  14. Duggan, I. C., S. A. Wood & D. W. West, 2015. Brown trout (Salmo trutta) removal by rotenone alters zooplankton and phytoplankton community composition in a shallow mesotrophic reservoir. N Z J Marine and Freshwater Research 49: 356–365.CrossRefGoogle Scholar
  15. Elser, J. J., 1999. The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwater Biology 42(3): 537–543.CrossRefGoogle Scholar
  16. Feldmann, T. & P. Nõges, 2007. Factors controlling macrophyte distribution in large shallow Lake Võrtsjärv. Aquatic Botany 87: 15–21.CrossRefGoogle Scholar
  17. Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecology 6: 20–28.CrossRefGoogle Scholar
  18. Imberti S., 2005. Meseta Lago Strobel. In Áreas importantes para la conservación de las aves en Argentina. Sitios prioritarios para la conservación de la biodiversidad. Di Giacomo A. S. (ed.). Aves Argentinas/Asociación Ornitológica del Plata: Buenos Aires: 415–416.Google Scholar
  19. Izaguirre, I. & J. F. Saad, 2014. Phytoplankton from natural water bodies of the Patagonian Plateau. Advances in Limnology 65: 309–319.CrossRefGoogle Scholar
  20. Izaguirre, I., P. del Giorgio, I. O’Farrell & G. Tell, 1990. Clasificación de 20 cuerpos de agua andinopatogónicos (Argentina) en base a la estructura del fitoplancton estival. Cryptogamie Algologie 11: 31–46.Google Scholar
  21. Izaguirre, I., F. Unrein, B. Modenutti & L. Allende, 2014. Photosynthetic picoplankton in Argentina lakes. Advances in Limnology 65: 343–357.CrossRefGoogle Scholar
  22. Izaguirre, I., J. Lancelotti, J. F. Saad, S. Porcel, I. O’Farrell, M. C. Marinone, I. Roesler & M. C. Dieguez, 2018. Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation. Global Ecology and Conservation 14: e00391.CrossRefGoogle Scholar
  23. Janssen, A. B. G., S. Teurlincx, S. An, J. H. Janse, H. W. Paerl & W. M. Mooij, 2014. Alternative stable states in large shallow lakes? Journal of Great Lakes Research 40: 813–826.CrossRefGoogle Scholar
  24. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge: 509.CrossRefGoogle Scholar
  25. Lancelotti, J. L., 2009. Caracterización limnológica de lagunas de la Provincia de Santa Cruz y efectos de la introducción de trucha arco iris: (Oncorhynchus mykiss) sobre las comunidades receptoras. Ph. D. Thesis, Universidad del Comahue: 122.Google Scholar
  26. Lancelotti, J. L., L. M. Pozzi, P. M. Yorio, M. C. Diéguez & M. A. Pascual, 2009. Fishless shallow lakes of Southern Patagonia as habitat for waterbirds at the onset of trout aquaculture. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 497–505.CrossRefGoogle Scholar
  27. Lancelotti, J. L., M. A. Pascual & A. Gagliardini, 2010a. A dynamic perspective of shallow lakes of arid Patagonia as habitat for waterbirds. In Meyer, P. L. (ed.), Ponds: Formation Characteristics and Uses. Nova Science Publishers Inc, New York: 187.Google Scholar
  28. Lancelotti, J. L., L. M. Pozzi, P. M. Yorio, M. C. Diéguez & M. A. Pascual, 2010b. Precautionary rules for exotic trout aqua-culture in fishless shallow lakes of Patagonia: minimizing impacts on the threatened Hooded Grebe (Podiceps gallardoi). Aquatic Conservation: Marine and Freshwater Ecosystems 20: 1–8.CrossRefGoogle Scholar
  29. Lancelotti, J. L., L. M. B. Bandieri & M. A. Pascual, 2015. Diet of the exotic Rainbow Trout in the critical habitat of the threatened Hooded Grebe. Knowledge and Management of Aquatic Ecosystems 416: 1–11.Google Scholar
  30. Lancelotti, J., M. C. Marinone & I. Roesler, 2017. Rainbow trout effects on zooplankton in the reproductive area of the critically endangered hooded grebe. Aquatic conservation 27: 128–136.CrossRefGoogle Scholar
  31. Liu, H., H. Jing, T. H. Wong & B. Chen, 2014. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environmental Microbiology Reports 6: 90–99.CrossRefPubMedGoogle Scholar
  32. Marker, A. F. H., A. Nusch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Archiv für Hydrobiologie Beihefte. Ergebnisse der Limnologie. 14: 91–106.Google Scholar
  33. Medina-Sánchez, J. M., M. Villar-argaiz & P. Carrillo, 2004. Neither with nor without you: a complex algal control on bacterioplankton in a high mountain lake. Limnology and Oceanography 49(5): 1722–1733.CrossRefGoogle Scholar
  34. Mormul, R. P., S. Thomaz, A. A. Agostinho, C. C. Bonecker & N. Mazzeo, 2012. Migratory benthic fishes may induce regime shifts in a tropical floodplain pond. Freshwater biology 57: 1592–1602.CrossRefGoogle Scholar
  35. Pace, M. L., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution 14: 483–488.CrossRefPubMedGoogle Scholar
  36. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1): 1–19.CrossRefGoogle Scholar
  37. Panza, J. L. & M. R. Franchi, 2002. Magmatismo Basáltico Cenozoico Extrandino. In Haller, M. J. (ed.), Geología y Recursos Naturales de Santa Cruz. Relatorio del XV congreso Geológico Argentino, El Calafate: 201–236.Google Scholar
  38. Pereyra, F. X., L. Fauqué & E. F. González Díaz, 2002. Geomorfología. In Haller, M. J. (ed.), Geología y Recursos Naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino, El Calafate: 325–352.Google Scholar
  39. Perotti, M. G., M. C. Diéguez & F. G. Jara, 2005. Estado del conocimiento de humedales del norte patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Revista Chilena de Historia Natural 78: 179–200.CrossRefGoogle Scholar
  40. Queimaliños, C. & M. Diaz, 2014. Phytoplankton of Andean Patagonian lakes. Advances in Limnology 65: 235–256.CrossRefGoogle Scholar
  41. Reissig, M., C. Trochine, C. Queimaliños, E. Balseiro & B. Modenutti, 2006. Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biological Conservation 132: 437–447.CrossRefGoogle Scholar
  42. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  43. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24(5): 417–428.CrossRefGoogle Scholar
  44. Romo, S., M. R. Miracle, M. J. Villena, J. Rueda, F. Cerriol & E. Vicente, 2004. Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biology 49(12): 1593–1607.CrossRefGoogle Scholar
  45. Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. LeRoy Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287(5459): 1770–1774.CrossRefPubMedGoogle Scholar
  46. Schallenberg, M. & B. Sorrell, 2009. Regime shifts between clear and turbid water in New Zealand lakes: environmental correlates and implications for management and restoration. N Z J Marine and Freshwater Research 43(3): 701–712.CrossRefGoogle Scholar
  47. Schaus, M. H., M. J. Vanni & T. E. Wissing, 2002. Biomass-dependent diet shifts in omnivorous gizzard shad: implications for growth, food web, and ecosystem effects. Transactions of the American Fisheries Society 131(1): 40–54.CrossRefGoogle Scholar
  48. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefPubMedGoogle Scholar
  49. Scheffer, M., J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. Van Nes, M. Rietkerk & G. Sugihara, 2009. Early-warning signals for critical transitions. Nature 461(7260): 53–59.CrossRefPubMedGoogle Scholar
  50. Schiaffino, M. R., J. M. Gasol, I. Izaguirre & F. Unrein, 2013. Picoplankton abundance and cytometric group diversity along a trophic and latitudinal lake gradient. Aquatic Microbial Ecology 68: 231–250.CrossRefGoogle Scholar
  51. Sharp, J. H., E. T. Peltzer, M. J. Alperin, G. Cauwet, J. W. Farrington, B. Fry, D. M. Karl, J. H. Martin, A. Spitzy, S. Tugrul & C. A. Carlson, 1993. Procedures subgroup report. Marine Chemistry 41: 37–49.CrossRefGoogle Scholar
  52. Stomp, M., J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp & L. J. Stal, 2007. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecology Letters 10: 290–298.CrossRefPubMedGoogle Scholar
  53. Suikkanen, S., S. Pulina, J. Engström-Öst, M. Lehtiniemi, S. Lehtinen & A. Brutemark, 2013. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8: e66475.CrossRefPubMedPubMedCentralGoogle Scholar
  54. The IUCN Red List of Threatened Species. (n.d.). Podiceps gallardoi. BirdLife International. 2016. Podiceps gallardoi. The IUCN Red List of Threatened Species 2016: e.T22696628A93574702. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22696628A93574702.en. Downloaded on 27 February 2018.
  55. Thomasson, K., 1959. Nahuel Huapi. Plankton of some lakes in an argentine National Park, with notes on terrestrial vegetation. Acta Phytogeografica Suecica 42: 1–83.Google Scholar
  56. Thomasson, K., 1963. Araucanian Lakes. Plankton studies in North Patagonia, with notes on terrestrial vegetation. Acta Pytogeografica Suecica 47: 1–39.Google Scholar
  57. Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton- methodik. Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie 9: 1–38.Google Scholar
  58. Venrick, E. L., 1978. How many cells to count? In Sournia, A. (ed.), Phytoplankton Manual. UNESCO, Paris: 167–180.Google Scholar
  59. Vollenweider, R. A. & J. Kerekes, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. Organization for Economic Co-Operation and Development (OECD), Paris.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018
corrected publication December 2018

Authors and Affiliations

  • Juan Francisco Saad
    • 1
    • 2
  • Sol Porcel
    • 3
  • Julio Lancelotti
    • 4
    • 2
  • Inés O’Farrell
    • 3
    • 2
  • Irina Izaguirre
    • 3
    • 2
  1. 1.Escuela Superior de Ciencias MarinasUniversidad Nacional del COMAHUERío NegroArgentina
  2. 2.National Council of Scientific and Technical Research from Argentina (CONICET)Buenos AiresArgentina
  3. 3.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, IEGEBA (CONICET-UBA)Buenos AiresArgentina
  4. 4.Instituto Patagónico para el Estudio de Ecosistemas Continentales CENPAT-CONICETChubutArgentina

Personalised recommendations