Advertisement

Hydrobiologia

, Volume 829, Issue 1, pp 95–111 | Cite as

Differences in food webs and trophic states of Brazilian tropical humid and semi-arid shallow lakes: implications of climate change

  • Rosemberg Fernandes MenezesEmail author
  • José Luiz Attayde
  • Sarian Kosten
  • Gissell Lacerot
  • Leonardo Coimbra e Souza
  • Luciana S. Costa
  • Leonel da S. L. Sternberg
  • Anna Claudia dos Santos
  • Michele de Medeiros Rodrigues
  • Erik Jeppesen
SHALLOW LAKES RESEARCH

Abstract

Global warming may intensify eutrophication of shallow lakes by affecting nutrient loading, evaporation rates, and water level and thus produce major changes in food webs. We investigated to what degree food webs in tropical humid lakes differed from those in more eutrophic semi-arid lakes of the same latitude. Our results indicate that the catchment area-to-lake area ratio, nutrients, chlorophyll a, suspended solids, abundances of phytoplankton, zooplankton, and omnivorous fish as well as total fish catch per unit effort were all higher in the semi-arid lakes, whereas inlet water-to-evaporation ratio (proxy for water balance), water transparency, percentage macrophytes cover, and the piscivores:omnivores ratio were higher in the humid lakes. Our results suggest that reduced inlet water-to-evaporation ratio will increase lake eutrophication, which, in turn, as in temperate regions, will alter trophic structure of the freshwater community.

Keywords

Omnivorous fish Zooplankton Phytoplankton Evaporation Precipitation Drylands 

Notes

Acknowledgements

We would like to thank Anne Mette Poulsen for manuscript assistance and Leonardo Henrique Teixeira Pinto for valuable artwork assistance. We thank Zeca Rodrigues for his hospitality during the field campaign in the coastal lakes and Andy Lotter, Egbert van Nes, Fabrício Camacho, Elinez Rocha, Jandeson Brasil, Nils Okun, Vanessa Mosca, Wanessa Sousa, and Caroline Gabriela for field assistance. We thank Nestor Mazzeo and David da Motta Marques for the work coordination and supply of fieldwork equipment, and Vera Huszar and Carla Kruk for coordinating and supervising phytoplankton identification. We also acknowledge the three anonymous reviewers for providing valuable comments and suggestions to improve our manuscript.

Funding

Funding was provided by NWO/WOTRO, The National Geographic Society, The Schure-Beijerinck-Popping fund, Kosten Watersport bv., The Brazilian National Council for Scientific and Technological Development (CNPq), and Banco de Seguros del Estado through the SALGA project and the Coordination for the Improvement of Higher Educational Personnel (CAPES/PNPD—Project No.: 2304/2011). EJ was supported by the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu), and AU Centre for Water Technology (watec.au.dk). SK was supported by NWO-VENI grant 86312012.

References

  1. Ab’saber, A. N., 1994. The Caatinga Domain. Caatinga, Sertão, Sertanejos. Livroarte Editora, Rio de Janeiro.Google Scholar
  2. Appelberg, M., B. C. Bergquist & E. Degerman, 2000. Using fish to assess environmental disturbance of Swedish lakes and streams – a preliminary approach. International Association of Theoretical and Applied Limnology 27(1): 311–315.Google Scholar
  3. Barbosa, J. E., E. S. F. Medeiros, J. Brasil, R. D. S. Cordeiro, M. C. B. Crispim & G. H. G. da Silva, 2012. Aquatic systems in semi-arid Brazil. Limnology and management. 24: 103–118.Google Scholar
  4. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbrichtilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. Review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  5. Bouvy, M., R. Molica, S. De Oliveira, M. Marinho & B. Beker, 1999. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast. Brazil. 20: 285–297.Google Scholar
  6. Bouvy, M., D. Falcão, M. Marinho, M. Pagano & A. Moura, 2000. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology 23: 13–27.CrossRefGoogle Scholar
  7. Bowen, G. J. & J. Revenaugh, 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research.  https://doi.org/10.1029/2003WR002086.CrossRefGoogle Scholar
  8. Branco, C. W. C., M.-I. A. Rocha, G. F. S. Pinto, G. A. Gomara & R. De Filippo, 2002. Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes and Reservoirs Research and Management 7: 87–92.CrossRefGoogle Scholar
  9. Brasil, J., J. L. Attayde, F. R. Vasconcelos, D. D. F. Dantas & V. L. M. Huszar, 2016. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770: 145–164.CrossRefGoogle Scholar
  10. Burrows, M. T., D. S. Schoeman, L. B. Buckley, P. Moore, E. S. Poloczanska, K. M. Brander, C. Brown, J. F. Bruno, C. M. Duarte, B. S. Halpern, J. Holding, C. V. Kappel, W. Kiessling, M. I. O’Connor, J. M. Pandolfi, C. Parmesan, F. B. Schwing, W. J. Sydeman & A. J. Richardson, 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334: 652–655.CrossRefGoogle Scholar
  11. Costa, M. R. A., J. L. Attayde & V. Becker, 2016. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia 778: 75–89.CrossRefGoogle Scholar
  12. Culver, D. A., M. M. Boucherle, D. J. Bean & J. W. Fletcher, 1985. Biomass of fresh-water crustacean zooplankton from length weight regressions. Canadian Journal of Fisheries and Aquatic Sciences 42: 1380–1390.CrossRefGoogle Scholar
  13. Cunha, E. M. S., I. M. Silveira, A. M. B. Nogueira & J. G. Vilaça, 1990. Análise ambiental do setor costeiro Maxaranguape-Touros/RN. Anais do Congresso Brasileiro de Geologia, Natal.Google Scholar
  14. Da Silva, V. D. R., 2004. On climate variability in Northeast of Brazil. Journal of Arid Environments 58: 575–596.CrossRefGoogle Scholar
  15. De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. van Donk, M. Winder & M. Lurling, 2013a. Plankton dynamics under different climate conditions in tropical freshwater systems (a reply to the comment by Sarmento et al., 2013). Freshwater Biology 58: 2211–2213.CrossRefGoogle Scholar
  16. De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. Van Donk, M. Winder & M. Lurling, 2013b. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.CrossRefGoogle Scholar
  17. Dumont, H. J., I. Vandevelde & S. Dumont, 1975. Dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefGoogle Scholar
  18. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical fresh-waters. Hydrobiologia 272: 105–123.CrossRefGoogle Scholar
  19. Gat, J. R., 1991. The heavy isotope enrichment of water in coupled evaporative systems. In Bowser, C., H. P. J. Taylor, J. R. O’Neil & I. R. Kaplan (eds), Stable Isotope Geochemistry: A tribute to Samuel Epstein. Geochemistry Society, St. Louis: 159–168.Google Scholar
  20. Gonzalez-Bergonzoni, I., M. Meerhoff, T. A. Davidson, F. T. de Mello, A. Baattrup-Pedersen & E. Jeppesen, 2012. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15: 492.CrossRefGoogle Scholar
  21. Guntzel, A. M., T. Matsumura-Tundisi & O. Rocha, 2003. Life cycle of Macrothrix flabelligera Smirnov, 1992 (Cladocera, Macrothricidae), recently reported in the Neotropical region. Hydrobiologia 490: 87–92.CrossRefGoogle Scholar
  22. Ha, K., E.-A. Cho, H.-W. Kim & G.-J. Joo, 1999. Microcystis bloom formation in the lower Nakdong River, South Korea: importance of hydrodynamics and nutrient loading. Marine and Freshwater Research 50: 89–94.CrossRefGoogle Scholar
  23. Havens, K. E., J. R. Beaver, E. E. Manis & T. L. East, 2015. Inter-lake comparisons indicate that fish predation, rather than high temperature, is the major driver of summer decline in Daphnia and other changes among cladoceran zooplankton in subtropical Florida lakes. Hydrobiologia 750: 57–67.CrossRefGoogle Scholar
  24. Hessen, D. O., B. A. Faafeng, P. Brettum & T. Andersen, 2006. Nutrient enrichment and planktonic biomass ratios in lakes. Ecosystems 9: 516–527.CrossRefGoogle Scholar
  25. Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  26. Iglesias, C., M. Meerhoff, L. S. Johansson, I. González-Bergonzoni, N. Mazzeo, J. P. Pacheco, F. T. de Mello, G. Goyenola, T. L. Lauridsen, M. Søndergaard, T. A. Davidson & E. Jeppesen, 2017. Stable isotope analysis confirms substantial differences between subtropical and temperate shallow lake food webs. Hydrobiologia 784: 111–123.CrossRefGoogle Scholar
  27. IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge.Google Scholar
  28. IPCC, 2014. Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. In Barros, V. R., C. B. Field, D. J. Dokken, M. D. (eds), MastrandreContribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  29. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.CrossRefGoogle Scholar
  30. Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, D. O. Hessen, M. Sondergaard, T. Lauridsen, P. Brettum & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6: 313–325.CrossRefGoogle Scholar
  31. Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. C. Branco, V. Huszar, & F. Scasso, 2005. Lake restoration and biomanipulation in temperate lakes: Relevance for subtropical and tropical lakes by Eutrophication of lakes. In Reddy, M. V. (ed), Restoration and Management of Tropical Eutrophic Lakes. CRC Press, Boca Raton: 341–359.Google Scholar
  32. Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Sondergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007a. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.CrossRefGoogle Scholar
  33. Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007b. Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia 584: 239–252.CrossRefGoogle Scholar
  34. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Sondergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, M. Beklioglu, A. Ozen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.CrossRefGoogle Scholar
  35. Jeppesen, E., M. Meerhoff, K. Holmgren, I. Gonzalez-Bergonzoni, F. Teixeira-de Mello, S. A. J. Declerck, L. De Meester, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. Liu, D. Balayla & X. Lazzaro, 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646: 73–90.CrossRefGoogle Scholar
  36. Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.CrossRefGoogle Scholar
  37. Kosten, S., V. L. M. Huszar, N. Mazzeo, M. Scheffer, L. D. Sternberg & E. Jeppesen, 2009a. Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecological Applications 19: 1791–1804.CrossRefGoogle Scholar
  38. Kosten, S., G. Lacerot, E. Jeppesen, D. Da Motta Marques, E. H. Van Nes, N. Mazzeo & M. Scheffer, 2009b. Effects of submerged vegetation on water clarity across climates. Ecosystems 12: 1117–1129.CrossRefGoogle Scholar
  39. Kosten, S., V. L. M. Huszar, E. Becares, L. S. Costa, E. van Donk, L.-A. Hansson, E. Jeppesenk, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lurling, T. Noges, S. Romo & M. Scheffer, 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.CrossRefGoogle Scholar
  40. Lazzaro, X., 1987. A reviews of planktivorous fishes – their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146: 97–167.CrossRefGoogle Scholar
  41. Lund, J. W. G., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algae number and the statistical basis of estimating by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  42. Magalhães, A., H. Filho, F. Garagorry, J. Gasques, L. Molion, M. D. S. Neto, C. Nobre, & E. Porto, 1988. The climatology of droughts and droughts prediction. In The Effects of Climatic Variations on Agriculture in Northeast Brazil: 29–48.Google Scholar
  43. Marengo, J. A., R. Jones, L. M. Alves & M. C. Valverde, 2009. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology 29: 2241–2255.CrossRefGoogle Scholar
  44. Margalef, R., 1983. Limnologia. Ômega, Barcelona.Google Scholar
  45. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Riegler (eds), A Manual on Methods for the Assesment of Secondary Productivity in Fresh Waters. Blackwell, Oxford: 228–265.Google Scholar
  46. Moscati, M. C. D. L. & M. A. Gan, 2007. Rainfall variability in the rainy season of semiarid zone of Northeast Brazil (NEB) and its relation to wind regime. International Journal of Climatology 512: 493–512.CrossRefGoogle Scholar
  47. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200-201(1):367-377CrossRefGoogle Scholar
  48. Moss, B., S. Kosten, M. Meerhoff, R. W. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. Liu, L. De Meester, H. Paerl & M. Scheffer, 2011. Allied attack: climate change and eutrophication. Inland Waters 1: 101–105.CrossRefGoogle Scholar
  49. NEN-EN, 1996. Bepaling van de totale en de samengestelde alkaliniteit Water – Bepaling van de alkaliniteit – Deel 1 (ISO-9963-1).Google Scholar
  50. New, M., D. Lister, M. Hulme & I. Makin, 2002. A high-resolution data set of surface climate over global land areas. Climate Research 21: 1–25.CrossRefGoogle Scholar
  51. NNI, 1986. Water – photometric determination of the content of dissolved orthophosphate and the total content of phosphorous compounds by continuous flow analysis. Normcommissie 390 147 “Waterkwaliteit”, Nederlands Normalisatie-insituut, 8.Google Scholar
  52. NNI, 1990. Water – photometric determination of the content of ammonium nitrogen and the sum of the contents of ammoniacal and organically bound nitrogen according to Kjeldahl by continuous flow analysis. In Nederlands Normalisatie-instituut, Normcommissie 390 147”. Nederlands Normalisatie-insituut, Normcommissie 390 147 “Waterkwaliteit,” 8.Google Scholar
  53. Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506: 257–263.CrossRefGoogle Scholar
  54. Nusch, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigments determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 14–36.Google Scholar
  55. O’Brien, K., B. Hayward, & F. Berkes, 2009. Rethinking social contracts: Building resilience in a changing climate. Ecol. Soc. 14(2): 12.CrossRefGoogle Scholar
  56. Oksanen, J., F. G. Blanchet, F. Michael, K. Roeland, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2017. vegan: Community Ecology Package. R package version 2.4-4., http://cran.r-project.org/package=vegan.
  57. Oyama, M. D. & C. A. Nobre, 2003. A new climate-vegetation equilibrium state for tropical South America. Geophysical Research Letters.  https://doi.org/10.1029/2003GL018600.CrossRefGoogle Scholar
  58. Özen, A., B. Karapinar, I. Kucuk, E. Jeppesen & M. Beklioglu, 2010. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia 646: 61–72.CrossRefGoogle Scholar
  59. Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.CrossRefGoogle Scholar
  60. Pauli, H. R., 1989. A new method to estimate individual dry weights of rotifers. Hydrobiologia 186: 355–361.CrossRefGoogle Scholar
  61. PBMC, 2014. Base científica das mudanças climáticas. Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas. Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas [Ambrizzi, T., Araujo, M. (eds)]. Rio de Janeiro, http://www.pbmc.coppe.ufrj.br/documentos/MCTI_PBMC_SumarioExecutivo4_Finalizado.pdf.
  62. R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/.
  63. Rast, W. & J. A. Thornton, 1996. Trends in eutrophication research and control. Hydrological Processes 10: 295–313.CrossRefGoogle Scholar
  64. Roland, F., V. L. M. Huszar, V. F. Farjalla, A. Enrich-Prast, A. M. Amado & J. P. H. B. Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology 72: 709–722.CrossRefGoogle Scholar
  65. Rosenzweig, C., D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu, G. Casassa, A. Menzel, T. L. Root, N. Estrella, B. Seguin, P. Tryjanowski, C. Liu, S. Rawlins & A. Imeson, 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453: 353.CrossRefGoogle Scholar
  66. Rozanski, K., K. Froehlich, & W. G. Mook, 2001. Surface water In Mook, W. G. (ed), Environmental Isotopes in the Hydrological Cycle: Principles and Applications. UNESCO/IAEA, Paris: 121.Google Scholar
  67. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Arch Hydrobiol Beih Ergeb Limnol 8: 71–76.Google Scholar
  68. Sarmento, H., A. M. Amado & J. P. Descy, 2013. Climate change in tropical fresh waters (comment on the paper “Plankton dynamics under different climatic conditions in space and time” by de Senerpont Domis et al., 2013b). Freshwater Biology 58: 2208–2210.CrossRefGoogle Scholar
  69. Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.CrossRefGoogle Scholar
  70. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  71. Scheffer, M., S. Barrett, S. R. Carpenter, C. Folke, A. J. Green, M. Holmgren, T. P. Hughes, S. Kosten, I. A. van de Leemput, D. C. Nepstad, E. H. van Nes, E. T. H. M. Peeters & B. Walker, 2015. Creating a safe operating space for iconic ecosystems. Science 347: 1317–1319.CrossRefGoogle Scholar
  72. Schielzeth, H., 2010. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1: 103–113.CrossRefGoogle Scholar
  73. Schindler, D. W., 1997. Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes 11: 1043–1067.CrossRefGoogle Scholar
  74. Sobrinho, T. A., P. T. S. Oliveira, D. B. B. Rodrigues & F. M. Ayres, 2010. Delimitação automática de bacias hidrográficas utilizando dados SRTM. Engenharia Agrícola 30: 46–57.CrossRefGoogle Scholar
  75. Søndergaard, M., R. Bjerring & E. Jeppesen, 2013. Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 710: 95–107.CrossRefGoogle Scholar
  76. Starling, F., X. Lazzaro, C. Cavalcanti & R. Moreira, 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshwater Biology 47: 2443–2452.CrossRefGoogle Scholar
  77. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.CrossRefGoogle Scholar
  78. Thornton, J. A. & W. Rast, 1989. Lake and reservoir management preliminary observations on nutrient enrichment of semi-arid, manmade lakes in the Northern and Southern hemispheres. Lake and Reservoir Management 5: 59–66.CrossRefGoogle Scholar
  79. Thornton, J. A. & W. Rast, 1993. A test of hypotheses relating to the comparative limnology and assessment of eutrophication in semi-arid man-made lakes. In Straškraba, M., J. G. Tundisi & A. Duncan (eds), Comparative Reservoir Limnology and Water Quality Management Developments in Hydrobiology. Springer, Netherlands: 1–24.Google Scholar
  80. Uhelinger, V., 1964. Étude statisque des méthodes de dénobrement planctonique. Arch Sci 17: 121–123.Google Scholar
  81. Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitt Int Ver Theo Angew Limnol 9: 1–38.Google Scholar
  82. Van Der Struijk, L. F. & C. Kroeze, 2010. Future trends in nutrient export to the coastal waters of South America : Implications for occurrence of eutrophication. Global Biogeochemical Cycles 24: 1–14.Google Scholar
  83. Wernberg, T., B. D. Russell, M. S. Thomsen, C. F. D. Gurgel, C. J. A. Bradshaw, E. S. Poloczanska & S. D. Connell, 2011. Seaweed communities in retreat from ocean warming. Current Biology 21: 1828–1832.CrossRefGoogle Scholar
  84. Wetzel, R. G. & E. Likens, 2000. Limnological Analyses. Springer, New York.CrossRefGoogle Scholar
  85. Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rosemberg Fernandes Menezes
    • 1
    • 2
    Email author
  • José Luiz Attayde
    • 2
  • Sarian Kosten
    • 3
    • 10
  • Gissell Lacerot
    • 4
  • Leonardo Coimbra e Souza
    • 5
  • Luciana S. Costa
    • 6
  • Leonel da S. L. Sternberg
    • 7
  • Anna Claudia dos Santos
    • 11
  • Michele de Medeiros Rodrigues
    • 2
  • Erik Jeppesen
    • 8
    • 9
  1. 1.Departamento de Fitotecnia e Ciência Ambientais, Centro de Ciências AgráriasUniversidade Federal da ParaíbaAreiaBrazil
  2. 2.Departamento de Ecologia, Centro de BiociênciasUniversidade Federal do Rio Grande do NorteNatalBrazil
  3. 3.Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
  4. 4.Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional del EsteUniversidad de la RepúblicaRochaUruguay
  5. 5.Departamento de Zoologia, Instituto de Biologia (IB), Núcleo de Estudos Limnológicos (NEL)Universidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil
  6. 6.Departamento de Botânica, Museu NacionalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  7. 7.Department of BiologyUniversity of MiamiCoral GablesUSA
  8. 8.Department of BioscienceAarhus UniversitySilkeborgDenmark
  9. 9.Sino-Danish Centre for Education and Research (SDC)University of Chinese Academy of SciencesBeijingChina
  10. 10.Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
  11. 11.Laboratório de Processamento de Imagens e GeoprocessamentoUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations