Advertisement

Hydrobiologia

, Volume 831, Issue 1, pp 87–100 | Cite as

There to stay: invasive filamentous green alga Mougeotia in Lake Kinneret, Israel

  • Tamar ZoharyEmail author
  • Alla Alster
  • Ora Hadas
  • Ulrike Obertegger
PHYTOPLANKTON & BIOTIC INTERACTIONS
  • 65 Downloads

Abstract

Mougeotia (Zygnematales, Charophyta) first appeared in the plankton of Lake Kinneret in 1998. While initially rare, from 2004 onwards it was present in the plankton continuously, forming massive blooms in spring (2005, 2006, 2012) or in winter (2010), occasionally appearing in different morphological and life cycle forms. Mougeotia maintained its population under a wide range of water temperatures, nutrient concentrations, solar radiation, pH levels and stratification patterns, making it a highly versatile alga. In multiple regression, year and month as the only predictors explained 36% of the pattern of Mougeotia biomass. However, Mougeotia biomass could not be explained by any of the environmental parameters considered. Modeling the temporal dynamics of Mougeotia biomass using an autoregressive integrated moving average (ARIMA(1,0,0)) explained 56% of variability indicating that intraspecific factors (e.g., competition for nutrients or self-shading) may determine the dynamics of Mougeotia biomass. To explain the lack of relationships with the environmental parameters, we hypothesize that (1) Mougeotia possesses exceptional physiological plasticity and/or (2) Lake Kinneret may host two or more genetically distinct cryptic species of Mougeotia with different environmental niches. Both explanations may hinder any inference on Mougeotia–environment relationships and require confirmation by experimental work.

Keywords

Algal blooms ARIMA Charophyta Density dependence Zygnematales 

Notes

Acknowledgements

We thank Tatiana Fishbein for conducting all microscope analyses from 1998 to 2012, Moti Diamant and Oz Zubari for collecting the field samples and the Mekorot Water Company for conducting the chemical analyses. Alon Rimmer provided the physical (water temperature, thermocline depth, solar radiation) data. Shai Gabai, MSc student of TZ, discovered that filaments of cultured Mougeotia adhere to the flask when grown with stirring. John Kinross from Napiar University, UK, was the first to induce our cultures into conjugation and to identify the genus as Mougeotia. The Israel Water Authority funded the long-term monitoring program on Lake Kinneret.

Supplementary material

10750_2018_3522_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2364 kb)

References

  1. Amato, A., W. H. C. F. Kooistra, J. H. L. Ghiron, D. G. Mann, T. Proschold & M. Montresor, 2007. Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158: 193–207.CrossRefGoogle Scholar
  2. Andow, D. A. & K. Kiritani, 2016. Density-dependent population regulation detected in short time series of saproxylic beetles. Population Ecology 58: 493–505.CrossRefGoogle Scholar
  3. Anneville, O. & J. P. Pelletier, 2000. Recovery of Lake Geneva from eutrophication: quantitative response of phytoplankton. Archiv für Hydrobiologie 148: 607–624.CrossRefGoogle Scholar
  4. APHA, 2005. Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington.Google Scholar
  5. Beheregaray, L. B. & A. Caccone, 2007. Cryptic biodiversity in a changing world. Journal of Biology 6: 9.CrossRefGoogle Scholar
  6. Berman, T., T. Zohary, A. Nishri & A. Sukenik, 2014. General background. In Zohary, T., A. Sukenik, T. Berman & A. Nishri (eds), Lake Kinneret: Ecology and Management. Aquatic Ecology Series. Springer, Dordrecht: 1–15.Google Scholar
  7. Berryman, A. A., 2003. On principles, laws and theory in population ecology. Oikos 103: 695–701.CrossRefGoogle Scholar
  8. Borlestean, A., P. C. Frost & D. L. Murray, 2015. A mechanistic analysis of density dependence in algal population dynamics. Frontiers in Ecology and Evolution 3: 37.CrossRefGoogle Scholar
  9. Bratbak, G., J. K. Egge & M. Heldal, 1993. Viral mortality of the marine algal Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Marine Ecology Progress Series 93: 39–48.CrossRefGoogle Scholar
  10. Danilov, R. A. & N. G. A. Ekelund, 2001. Comparison of usefulness of three types of artificial substrata. Journal of Microbiological Methods 45: 167–170.CrossRefGoogle Scholar
  11. DeLong, J. P. & D. T. Hanson, 2011. Warming alters density dependence, energetic fluxes, and population size in a model algae. Ecological Complexity 8: 320–325.CrossRefGoogle Scholar
  12. Fraser, C. I., H. G. Spencer & J. M. Waters, 2009. Glacial oceanographic contrasts explain phylogeography of Australian bull kelp. Molecular Ecology 18(10): 2287–2296.CrossRefGoogle Scholar
  13. Garibaldi, L., A. Anzani, A. Marieni, B. Leoni & R. Mosello, 2003. Studies on the phytoplankton of the deep subalpine Lake Iseo. Journal of Limnology 62: 177–189.CrossRefGoogle Scholar
  14. Graham, J. M., P. Arancibia-Avila & L. E. Graham, 1996a. Physiological ecology of a species of the filamentous green alga Mougeotia under acidic conditions: Light and temperature effects on photosynthesis and respiration. Limnology and Oceanography 41: 253–262.CrossRefGoogle Scholar
  15. Graham, J. M., P. Arancibia-Avila & L. E. Graham, 1996b. Effects of pH and selected metals on growth of the filamentous green alga Mougeotia under acidic conditions. Limnology and Oceanography 41: 263–270.CrossRefGoogle Scholar
  16. Guiry M.D, M. D. Guiry & G. M. Guiry, 2017. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. [available on internet at http://www.algaebase.org], Accessed 26 September 2017.
  17. Hawes, I., 1989. Filamentous green algae in freshwater streams on Signy Island, Antarctica. Hydrobiologia 172: 1–18.CrossRefGoogle Scholar
  18. Hecky, R. E. & H. J. Kling, 1987. Phytoplankton ecology of the great lakes in the rift valley of central Africa. Archiv für Hydrobiologie. Beihefte. Ergebnisse der Limnologie 25: 197–228.Google Scholar
  19. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  20. Horner, R. R., E. B. Welch, M. R. Seeley & J. M. Jacoby, 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwater Biology 24: 215–232.CrossRefGoogle Scholar
  21. Howell, E. T., M. A. Turner, R. L. France, M. B. Jackson & P. M. Stokes, 1990. Comparison of zygnematacean (Chlorophyta) algae in the metaphyton of two acidic lakes. Canadian Journal of Fisheries and Aquatic Sciences 47: 1085–1092.CrossRefGoogle Scholar
  22. Hyndman, R.J. & Y. Khandakar, 2008. Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, 26: 1–22. [available on internet at http://www.jstatsoft.org/article/view/v027i03].
  23. Hyndman, R.J., M. O’Hara-Wild, C. Bergmeir, S. Razbash & E. Wang, 2017. forecast: Forecasting functions for time series and linear models. R package version 8.0, [available on internet at http://github.com/robjhyndman/forecast].
  24. Imberger, I. & C. L. Marti, 2014. The seasonal hydrodymanic habitat. In Zohary, T., A. Sukenik, T. Berman & A. Nishri (eds), Lake Kinneret: Ecology and Management. Aquatic Ecology Series. Springer, Dordrecht: 161–190.Google Scholar
  25. Johnson, L. R., 2011. Phylum Chlorophyta. Family Zygnemataceae. In John, D. M., B. A. Whitton & A. J. Brook (eds), The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge: 576–608.Google Scholar
  26. Jung, S. W., Y. H. Kang, T. Katano, B. H. Kim, S. Y. Kim, J. H. Cho, K. Lee & M. S. Han, 2010. Testing addition of Pseudomonas fluorescens HYK0210-SK09 to mitigate blooms of the diatom Stephanodiscus hantzschii in small-and large-scale mesocosms. Journal of Applied Phycology 22: 409–419.CrossRefGoogle Scholar
  27. Kaplan-Levy, R. N., A. Alster-Gloukhovski, Y. Benyamini & T. Zohary, 2016. Lake Kinneret phytoplankton: integrating classical and molecular taxonomy. Hydrobiologia 764: 283–302.CrossRefGoogle Scholar
  28. Kennedy R. F. G., 1976. Biology of the green alga Mougeotia traseaui Collins. PhD Dissertation, University of Arizona.Google Scholar
  29. Klug, J. L. & J. M. Fisher, 2000. Factors influencing the growth of Mougeotia in experimentally acidified mesocosms. Canadian Journal of Fisheries and Aquatic Sciences 57: 538–547.CrossRefGoogle Scholar
  30. Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86–94.CrossRefGoogle Scholar
  31. Komarovsky, B., 1959. The plankton of Lake TIberias. Bulletin of the Research Council of Israel B8: 65–96.Google Scholar
  32. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  33. Mayali, X. & F. Azam, 2004. Algicidal bacteria in the sea and their impact on algal blooms. Journal of Eukaryotic Microbiology 51: 139–144.CrossRefGoogle Scholar
  34. McIntire, C. D., G. L. Larson & R. E. Truitt, 2007. Seasonal and interannual variability in the taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon. Long-term Limnological Research and Monitoring at Crater Lake, Oregon. Hydrobiologia 574: 179–204.CrossRefGoogle Scholar
  35. Middleton, C. M. & P. C. Frost, 2014. Stoichiometric and growth responses of a freshwater filamentous green alga to varying nutrient supplies: slow and steady wins the race. Freshwater Biology 59: 2225–2234.CrossRefGoogle Scholar
  36. Mills, K. H. & D. W. Schindler, 1986. Biological indicators of lake acidification. Water, Air, and Soil Pollution 30: 779–789.CrossRefGoogle Scholar
  37. Morabito, G., D. Ruggio & P. Panzani, 2002. Recent dynamics (1995–1999) of the phytoplankton assemblages in Lago Maggiore as a basic tool for defining association patterns in the Italian deep lakes. Journal of Limnology 61: 129–145.CrossRefGoogle Scholar
  38. Moss, B., 1972. The influence of environmental factors on the distribution of freshwater algae: an experimental study. I. Introduction and the influence of calcium concentration. Journal of Ecology 60: 917–932.CrossRefGoogle Scholar
  39. Naselli-Flores, L., 2000. Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424: 1–11.CrossRefGoogle Scholar
  40. Obertegger, U., D. Fontaneto & G. Flaim, 2012. Using DNA taxonomy to investigate the ecological determinants of plankton diversity: explaining the occurrence of Synchaeta spp. (Rotifera, Monogononta) in mountain lakes. Freshwater Biology 56: 1–9.Google Scholar
  41. Obertegger, U., G. Flaim & D. Fontaneto, 2014. Cryptic diversity within the rotifer Polyarthra dolichoptera along an altitudinal gradient. Freshwater Biology 59: 2413–2427.CrossRefGoogle Scholar
  42. Pollingher, U., 1978. The phytoplankton of Lake Kinneret. In Serruya, C. (ed.), Lake Kinneret, Vol. 32., Monographiae Biologicae Dr. Junk Publishers, The Hague: 229–242.Google Scholar
  43. R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [available on internet at http://www.R-project.org].
  44. Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. International Ecology Institute, Oldendorf/Luhe.Google Scholar
  45. Reynolds, C. S., 2006. The ecology of phytoplankton. Cambridge Univ Press, Cambridge.CrossRefGoogle Scholar
  46. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  47. Rimmer, A., G. Gal, T. Opher, Y. Lechinsky & Y. Z. Yacobi, 2011. Mechanisms of long-term variations in the thermal structure of a warm lake. Limnology and Oceanography 56: 974–988.CrossRefGoogle Scholar
  48. Salmaso, N., 2000. Factors affecting the seasonality and distribution of cyanobacteria and chlorophytes: a case study from the large lakes south of the Alps, with special reference to Lake Garda. Hydrobiologia 438: 43–63.CrossRefGoogle Scholar
  49. Salmaso, N., 2010. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshwater Biology 55: 825–846.CrossRefGoogle Scholar
  50. Schlick-Steiner, B. C., F. M. Steiner, B. Seifert, C. Stauffer, E. Christian & R. H. Crozier, 2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55: 421–438.CrossRefGoogle Scholar
  51. Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138: 1–7.CrossRefGoogle Scholar
  52. Stoof-Leichsenring, K. R., L. S. Epp, M. H. Trauth & R. Tiedemann, 2012. Hidden diversity in diatoms of Kenyan Lake Naivasha: a genetic approach detects temporal variation. Molecular Ecology 21: 1918–1930.CrossRefGoogle Scholar
  53. Straile, D., M. C. Jochimsen & R. Kummerlin, 2013. The use of long-term monitoring data for studies of planktonic diversity: a cautionary tale from two Swiss lakes. Freshwater Biology 58: 1291–1301.CrossRefGoogle Scholar
  54. Sukenik, A., T. Zohary & D. Markel, 2014. The monitoring programme. In Zohary, T., A. Sukenik, T. Berman & A. Nishri (eds), Lake Kinneret: Ecology and Management. Aquatic Ecology Series. Springer, Dordrecht: 561–575.Google Scholar
  55. Tapolczai, K., O. Anneville, J. Padisák, N. Salmaso, G. Morabito, T. Zohary, R. D. Tadonléké & F. Rimet, 2015. Occurrence and mass development of Mougeotia spp. (Zygnemataceae) in large, deep lakes. Hydrobiologia 745: 17–29.CrossRefGoogle Scholar
  56. Transeau, E. N., 1926. The Genus Mougeotia. Ohio Journal of Science 26: 311–338.Google Scholar
  57. Turner, M. A., M. B. Jackson, D. L. Findlay, R. W. Graham, E. R. DeBruyn & E. M. Vandermeer, 1987. Early responses of periphyton to experimental lake acidification. Canadian Journal of Fisheries and Aquatic Sciences 44(S1): s135–s149.CrossRefGoogle Scholar
  58. Turner, M. A., E. T. Howell, M. Summerby, R. H. Hesslein, D. L. Findlay & M. B. Jackson, 1991. Changes in epilithon and epiphyton associated with experimental acidification of a lake to pH 5. Limnology and Oceanography 36: 1390–1405.CrossRefGoogle Scholar
  59. Turner, M. A., D. W. Schindler, D. L. Findlay, M. B. Jackson & G. G. Robinson, 1995. Disruption of littoral algal associations by experimental lake acidification. Canadian Journal of Fisheries and Aquatic Sciences 52: 2238–2250.CrossRefGoogle Scholar
  60. Utermöhl, H., 1931. Neue Wege in der quantitativen Erfassung des Planktons. Verhandlungen des Internationalen Verein Limnologie 5: 567–595.Google Scholar
  61. Wood, S. N., 2006. Generalized Additive Models: an introduction with R. Chapman and Hall/CRC, California: 410.CrossRefGoogle Scholar
  62. Zhang, X., P. Xie, F. Chen, S. Li & J. Qin, 2007. Driving forces shaping phytoplankton assemblages in two subtropical plateau lakes with contrasting trophic status. Freshwater Biology 52: 1463–1475.CrossRefGoogle Scholar
  63. Ziv, B., E. Shilo, Y. Lechinsky & A. Rimmer, 2014. Meteorology. In Zohary, T., A. Sukenik, T. Berman & A. Nishri (eds), Lake Kinneret: Ecology and Management. Aquatic Ecology Series. Springer, Dordrecht: 81–96.Google Scholar
  64. Zohary, T., 2004. Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshwater Biology 49: 1355–1371.CrossRefGoogle Scholar
  65. Zohary, T., A. Sukenik, T. Berman & A. Nishri (eds), 2014a. Lake Kinneret: Ecology and Management Aquatic Ecology Series. Springer, Dordrecht: 683.Google Scholar
  66. Zohary, T., Y. Z. Yacobi, A. Alster, T. Fishbein, S. Lippman & G. Tibor, 2014b. Phytoplankton. In Zohary, T., A. Sukenik, T. Berman & A. Nishri (eds), Lake Kinneret: Ecology and Management. Aquatic Ecology Series. Springer, Dordrecht: 161–190.Google Scholar
  67. Zohary, T., M. Shneor & K. D. Hambright, 2016. PlanktoMetrix—a computerized system to support microscope counts and measurements of plankton. Inland Waters 6: 131–135.CrossRefGoogle Scholar
  68. Zuur, A. F., 2012. A beginner’s guide to generalized additive models with R Newburgh. Highland Statistics Limited, London: 206.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kinneret Limnological LaboratoryIsrael Oceanographic & Limnological ResearchMigdalIsrael
  2. 2.Research and Innovation CenterEdmund Mach FoundationSan Michele all’ AdigeItaly

Personalised recommendations