Advertisement

Hydrobiologia

, Volume 843, Issue 1, pp 1–11 | Cite as

Genetic differentiation of the Malawi blue crab reflects Pleistocene desiccation of Lake Malawi (Brachyura, Potamonautidae: Potamonautes lirrangensis (Rathbun, 1904))

  • John K. Kochey
  • Savel R. Daniels
  • Cornelia Plagge
  • Soudabeh Mehrabi
  • Lukas Hartmann
  • Friedemann Schrenk
  • Martin Plath
  • Sebastian KlausEmail author
SPECIATION IN ANCIENT LAKES 7

Abstract

Lake Malawi is famous for the rapid speciation of cichlid fishes, but the potential diversification of its invertebrate fauna is poorly studied. Using two mitochondrial DNA sequence markers (partial ND1 and Cyt b genes), we investigated the population genetic structure of the only known species of freshwater crab inhabiting Lake Malawi (Potamonautes lirrangensis (Rathbun, 1904)). We detected little overall genetic differentiation among different sampling sites (pairwise ΦST-values = 0.00–0.13). Genetic differentiation between sampling sites was better explained by linear distances than by shoreline distances, suggesting that ‘sweepstake dispersal’ between western and eastern shores occurs. Moreover, several population genetic parameters (Tajima’s D, Fu’s FS, Fay and Wu’s H and mismatch distribution analysis) suggest a recent population expansion, and Bayesian skyline plot analysis confirmed a sudden increase of the effective population size between 70 and 30 ka. Genetic diversity decreased towards the southern, shallower part of the lake, suggesting a more recent colonization of the southern shores. This finding is in line with hypotheses on Lake Malawi’s paleogeography suggesting that the lake largely desiccated during Pleistocene East African megadroughts and re-expanded southwards only recently after ~ 70 ka.

Keywords

Ancient lake Freshwater crab Intra-lacustrine diversification Dispersal Adaptive radiation 

Notes

Acknowledgements

Field work for this study was conducted in cooperation with and supported by Dr. Dylo Pemba and Dr. Zuze Dulany of Chancellor College Zomba, Malawi. The population at Cape McLear was sampled during a field school supported by the Volkswagen Foundation [Grant No. AZ 86 253]. We thank Orsolya Klára Mák, Kathrin Schleich and Elena Richter who helped acquiring the ND1 data during a practical course at the Universität Frankfurt in 2012. CP was funded by the scholarship program of the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU); JKK is supported by a joint grant of the Ministry of Higher Education, Science and Technology of Kenya (MOHEST) and the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD) [Grant No. 57139945]; and SK by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) [Grant No. DFG KL2378/2-1]. We thank two anonymous referees for their helpful suggestions.

References

  1. Albertson, R. C., J. A. Markert, P. D. Danley & T. D. Kocher, 1999. Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences of the U.S.A. 96: 5107–5110.Google Scholar
  2. Barluenga, M. & A. Meyer, 2005. Old fish in a young lake: stone loach (Pisces: Barbatula barbatula) populations in Lake Constance are genetically isolated by distance. Molecular Ecology 14: 1229–1239.PubMedGoogle Scholar
  3. Brooks, J. L., 1950. Speciation in ancient lakes (concluded). The Quarterly Review of Biology 25: 131–176.PubMedGoogle Scholar
  4. Cohen, A. S., 2012. Scientific drilling and biological evolution in ancient lakes: lessons learned and recommendations for the future. Hydrobiologia 682: 3–25.Google Scholar
  5. Cohen, A. S., K.-E. Lezzar, J.-J. Tiercelin & M. Soreghan, 1997. New palaeogeographic and lake-level reconstructions of Lake Tanganyika: implications for tectonic, climatic and biological evolution in a rift lake. Basin Research 9: 107–132.Google Scholar
  6. Cohen, A. S., J. R. Stone, K. R. M. Beuning, L. E. Park, P. N. Reinthal, D. Dettman, C. A. Scholz, T. C. Johnson, J. W. King, M. R. Talbot, E. T. Brown & S. J. Ivory, 2007. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Sciences of the U.S.A. 104: 16422–16427.Google Scholar
  7. Cumberlidge, N. & K. S. Meyer, 2011. The freshwater crabs of Lake Kivu (Crustacea: Decapoda: Brachyura: Potamonautidae). Journal of Natural History 45: 1835–1857.Google Scholar
  8. Cumberlidge, N. & S. R. Daniels, 2014. Recognition of two new species of freshwater crabs from the Seychelles based on molecular evidence (Potamoidea: Potamonautidae). Invertebrate Systematics 28: 17–31.Google Scholar
  9. Cumberlidge, N., R. V. Sternberg, I. R. Bills & H. A. Martin, 1999. A revision of the genus Platythelphusa A. Milne-Edwards, 1887 from Lake Tanganyika, East Africa (Decapoda: Potamoidea: Platythelphusidae). Journal of Natural History 33: 1487–1512.Google Scholar
  10. Cunnington, W. A., 1907. Zoological results of the Third Tanganyika Expedition, conducted by Dr. W.A. Cunnington, 1904-1905. Report on the brachyurous Crustacea. Proceedings of the Zoological Society of London 77: 258–276.Google Scholar
  11. Daniels, S. R., 2011. Reconstructing the colonisation and diversification history of the endemic freshwater crab (Seychellum alluaudi) in the granitic and volcanic Seychelles. Molecular Phylogenetics and Evolution 61: 534–542.PubMedGoogle Scholar
  12. Daniels, S. R. & J. Bayliss, 2012. Neglected refugia of biodiversity: mountainous regions in Mozambique and Malawi yield two novel freshwater crab species (Potamonautidae: Potamonautes). Zoological Journal of the Linnean Society 164: 498–509.Google Scholar
  13. Danley, P. D. & T. D. Kocher, 2001. Speciation in rapidly diverging systems: lessons from Lake Malawi. Molecular Ecology 10: 1075–1086.PubMedGoogle Scholar
  14. Del Sal, G., G. Manfioletti & C. Schneider, 1989. The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. BioTechniques 7: 514–520.PubMedGoogle Scholar
  15. Delvaux, D., 1996. Age of Lake Malawi (Nyasa) and water level fluctuations. In Musée royal de l’Afrique centrale, Tervuren, Dept. Geol. Min. (ed.), Rapport Annuel 1993 & 1994: 99–108.Google Scholar
  16. Dobson, M., A. Magana, J. M. Mathooko & F. K. Ndegwa, 2002. Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biology 47: 909–919.Google Scholar
  17. Drummond, A. J., A. Rambaut, B. Shapiro & O. G. Pybus, 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22: 1185–1192.PubMedGoogle Scholar
  18. Drummond, A. J., S. Y. W. Ho, M. J. Phillips & A. Rambaut, 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88.PubMedPubMedCentralGoogle Scholar
  19. Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.PubMedPubMedCentralGoogle Scholar
  20. Eccles, D. H., 1974. An outline of the physical limnology of Lake Malawi (Lake Nyasa). Limnology and Oceanography 19: 730–742.Google Scholar
  21. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1: 47. Online.Google Scholar
  22. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedPubMedCentralGoogle Scholar
  23. Fay, J. C. & C. I. Wu, 2000. Hitchhiking under positive Darwinian selection. Genetics 155: 1405–1413.PubMedPubMedCentralGoogle Scholar
  24. Felton, A. A., J. M. Russell, A. S. Cohen, M. E. Baker, J. T. Chesley, K. E. Lezzar, M. M. McGlue, J. S. Pigati, J. Quade, J. C. Stager & J. J. Tiercelin, 2007. Paleolimnological evidence for the onset and termination of glacial aridity from Lake Tanganyika, tropical East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 252: 405–423.Google Scholar
  25. Fu, Y.-X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.PubMedPubMedCentralGoogle Scholar
  26. Genner, M. J., J. A. Todd, E. Michel, D. Erpenbeck, A. Jimoh, D. A. Joyce, A. Piechocki & J.-P. Pointier, 2007. Amassing diversity in an ancient lake: evolution of a morphologically diverse parthenogenetic gastropod assemblage in Lake Malawi. Molecular Ecology 16: 517–530.PubMedGoogle Scholar
  27. Gorthner, A., 1994. What is an ancient lake? In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie, 44. Schweizerbart, Stuttgart: 97–100.Google Scholar
  28. Harpending, H. C., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66: 591–600.PubMedGoogle Scholar
  29. Harpending, H. C., S. T. Sherry, A. R. Rogers & M. Stoneking, 1993. The genetic structure of ancient human populations. Current Anthropology 34: 483–496.Google Scholar
  30. Hill, M. P. & J. H. O’Keeffe, 1992. Some aspects of the ecology of the freshwater crab Potamonautes perlatus Milne Edwards) in the upper reaches of the Buffalo River, eastern Cape Province, South Africa. Southern African Journal of Aquatic Sciences 18: 42–50.Google Scholar
  31. Hudson, R. R., 1990. Gene genealogies and the coalescent process. In Futuyma, D. J. & J. Antonovics (eds), Oxford Surveys in Evolutionary Biology. Oxford University Press, New York: 1–44.Google Scholar
  32. Ivory, S. J., M. W. Blome, J. W. King, M. M. McGlue, J. E. Cole & A. S. Cohen, 2016. Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years. Proceedings of the National Academy of Sciences of the U.S.A. 113: 11895–11900.Google Scholar
  33. Jesse, R., M. Grudinski, S. Klaus, B. Streit & M. Pfenninger, 2011. Evolution of freshwater crab diversity in the Aegean region (Crustacea: Brachyura: Potamidae). Molecular Phylogenetics and Evolution 59: 23–33.PubMedGoogle Scholar
  34. Jesse, R., M. Pfenninger, S. Fratini, M. Scalici, B. Streit & C. D. Schubart, 2009. Disjunct distribution of the Mediterranean freshwater crab Potamon fluviatile—natural expansion or human introduction? Biological Invasions 11: 2209–2221.Google Scholar
  35. Jesse, R., C. D. Schubart & S. Klaus, 2013. Identification of a cryptic lineage within Potamon fluviatile (Herbst) (Crustacea: Brachyura: Potamidae). Invertebrate Systematics 24: 348.Google Scholar
  36. Johnson, T. C., C. A. Scholz, M. R. Talbot, K. Kelts, R. D. Ricketts, G. Ngobi, K. R. M. Beuning, I. Ssemmanda & J. W. McGill, 1996. Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlid fishes. Science 273: 1091–1093.PubMedGoogle Scholar
  37. Klaus, S., J. C. E. Mendoza, J. H. Liew, M. Plath, R. Meier & D. C. J. Yeo, 2013. Rapid evolution of troglomorphic characters suggests selection rather than neutral mutation as a driver of eye reduction in cave crabs. Biology Letters 9: 20121098.PubMedPubMedCentralGoogle Scholar
  38. Lande, R., O. Seehausen & J. J. M. van Alphen, 2001. Mechanisms of rapid sympatric speciation by sex reversal and sexual selection in cichlid fish. Genetica 112(113): 435–443.PubMedGoogle Scholar
  39. Lezzar, K. E., J.-J. Tiercelin, M. D. E. Batist, A. S. Cohen, T. Bandora, P. van Rensbergen, C. Le Turdu, W. Mifundu & J. Klerkx, 1996. New seismic stratigraphy and Late Tertiary history of the North Tanganyika Basin, East African Rift system, deduced from multichannel and high-resolution reflection seismic data and piston core evidence. Basin Research 8: 1–28.Google Scholar
  40. Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. (Oxford, England).Google Scholar
  41. Lyons, R. P., C. A. Scholz, A. S. Cohen, J. W. King, E. T. Brown, S. J. Ivory, T. C. Johnson, A. L. Deinof, P. N. Reinthalg, M. M. McGlue & M. W. Blome, 2015. Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Proceedings of the National Academy of Sciences 112: 15568–15573.Google Scholar
  42. Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.PubMedGoogle Scholar
  43. Marijnissen, S. A. E., F. Schram, N. Cumberlidge & E. Michel, 2004. Two new species of Platythelphusa A. Milne-Edwards, 1887 (Decapoda, Potamoidea, Platythelphusidae) and comments on the taxonomic position of P. denticulata Capart, 1952 from Lake Tanganyika, East Africa. Crustaceana 77: 513–532.Google Scholar
  44. Marijnissen, S. A. E., E. Michel, S. R. Daniels, D. Erpenbeck, S. B. J. Menken & F. Schram, 2006. Molecular evidence for recent divergence of Lake Tanganyika endemic crabs (Decapoda: Platythelphusidae). Molecular Phylogenetics and Evolution 40: 628–634.PubMedGoogle Scholar
  45. Marijnissen, S. A. E., E. Michel, M. Kamermans, K. Olaya-Bosch, M. Kars, D. F. R. Cleary, E. E. van Loon, P. G. Rachello Dolmen & S. B. J. Menken, 2008. Ecological correlates of species differences in the Lake Tanganyika crab radiation. Hydrobiologia 615: 81–94.Google Scholar
  46. Marijnissen, S. A. E., E. Michel, D. F. R. Cleary & P. B. McIntyre, 2009. Ecology and conservation status of endemic freshwater crabs in Lake Tanganyika, Africa. Biodiversity and Conservation 18: 1555–1573.Google Scholar
  47. Markert, J. A., M. E. Arnegard, P. D. Danley & T. D. Kocher, 1999. Biogeography and population genetics of the Lake Malawi cichlid Melanochromis auratus: habitat transience, philopatry and speciation. Molecular Ecology 8: 1013–1026.Google Scholar
  48. Martens, K. & I. Schön, 1999. Crustacean biodiversity in ancient lakes: a review. Crustaceana 72: 899–910.Google Scholar
  49. Martens, K., B. Goddeeris & G. Coulter, 1994. Speciation in ancient lakes—40 years after Brooks. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie, 44. Schweizerbart, Stuttgart: 75–96.Google Scholar
  50. Masese, F. O., N. Kitaka, J. Kipkemboi, G. M. Gettel, K. Irvine & M. E. McClain, 2014. Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild. Freshwater Science 33: 435–450.Google Scholar
  51. McKaye, K. R., T. Kocher, P. Reinthal, R. Harrison & I. Kornfield, 1984. Genetic evidence for allopatric and sympatric differentiation among color morphs of a Lake Malawi cichlid fish. Evolution 38: 215–219.PubMedGoogle Scholar
  52. Meyer, A., 1993. Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends in Ecology & Evolution 8: 279–284.Google Scholar
  53. Meyer, B. S., M. Matschiner & W. Salzburger, 2015. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Molecular Phylogenetics and Evolution 83: 56–71.PubMedPubMedCentralGoogle Scholar
  54. Michel, E., 1994. Why snails radiate: a review of gastropod evolution in long-lived lakes, both recent and fossil. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie, 44. Schweizerbart, Stuttgart: 285–317.Google Scholar
  55. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  56. Pfenninger, M. & K. Schwenk, 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7: 121.PubMedPubMedCentralGoogle Scholar
  57. Poettinger, T. & C. D. Schubart, 2014. Molecular diversity of freshwater crabs from Sulawesi and the sequential colonization of ancient lakes. Hydrobiologia 739: 73–84.Google Scholar
  58. Rathbun, M. J., 1904. Les crabes d’eau douce (Potamonidae). Archives du Muséum d’histoire naturelle, Paris 4(6): 225–312.Google Scholar
  59. Rathbun, M. J., 1905. Les crabes d’eau douce (Potamonidae). Archives du Muséum d’histoire naturelle, Paris 4(7): 159–321.Google Scholar
  60. Reed, S. K. & N. Cumberlidge, 2006. Taxonomy and biogeography of the freshwater crabs of Tanzania, East Africa. Zootaxa 1262: 1–139.Google Scholar
  61. Rogers, A. R. & H. C. Harpending, 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552–569.PubMedGoogle Scholar
  62. Salzburger, W., T. Mack, E. Verheyen & A. Meyer, 2005. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology 5: 17.PubMedPubMedCentralGoogle Scholar
  63. Salzburger, W., B. Van Bocxlaer & A. S. Cohen, 2014. Ecology and evolution of the African Great Lakes and their faunas. Annual Review of Ecology, Evolution, and Systematics 45: 519–545.Google Scholar
  64. Schneider, S. & L. Excoffier, 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152: 1079–1089.PubMedPubMedCentralGoogle Scholar
  65. Scholz, C. A., A. S. Cohen, T. C. Johnson, J. King, M. R. Talbot & E. T. Brown, 2011. Scientific drilling in the Great Rift Valley: the 2005 Lake Malawi Scientific Drilling Project—an overview of the past 145,000 years of climate variability in Southern Hemisphere East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 303: 3–19.Google Scholar
  66. Schön, I., E. Verheyen & K. Martens, 2001. Speciation in ancient lake ostracods: comparative analysis of Baikalian Cytherissa and Tanganyikan Cyprideis. In Williams, W. D. (ed.), Verhandlungen IVL: 27th Congress in Dublin 1998. Verhandlungen IVL. Schweizerbart, Stuttgart: 2674–2677.Google Scholar
  67. Schubart, C. D., T. Santl & P. Koller, 2008. Mitochondrial patterns of intra- and interspecific differentiation among endemic freshwater crabs of ancient lakes in Sulawesi. Contributions to Zoology 77: 83–90.Google Scholar
  68. Schultheiss, R., B. van Bocxlaer, T. Wilke & C. Albrecht, 2009. Old fossils—young species: evolutionary history of an endemic gastropod assemblage in Lake Malawi. Proceedings of the Royal Society B 276: 2837–2846.PubMedGoogle Scholar
  69. Schultheiss, R., T. Wilke, A. Jørgensen & C. Albrecht, 2011. The birth of an endemic species flock: demographic history of the Bellamya group (Gastropoda, Viviparidae) in Lake Malawi. Biological Journal of the Linnean Society 102: 130–143.Google Scholar
  70. Schultheiss, R., B. Van Bocxlaer, F. Riedel, T. von Rintelen & C. Albrecht, 2014. Disjunct distributions of freshwater snails testify to a central role of the Congo system in shaping biogeographical patterns in Africa. BMC Evolutionary Biology 14: 42.PubMedPubMedCentralGoogle Scholar
  71. Seehausen, O., 2000. Explosive speciation rates and unusual species richness in haplochromine cichlid fishes: effects of sexual selection. In Rossiter, A. (ed.), Ancient Lakes: Biodiversity, Ecology and Evolution. Advances in Ecological Research, Vol. 31. Elsevier, Amsterdam: 237–274.Google Scholar
  72. Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society B 273: 1987–1998.PubMedGoogle Scholar
  73. Seehausen, O., Y. Terai, I. S. Magalhaes, K. L. Carleton, H. D. J. Mrosso, R. Miyagi, I. van der Sluijs, M. V. Schneider, M. E. Maan, H. Tachida, H. Imai & N. Okada, 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620–626.PubMedGoogle Scholar
  74. Shaw, P. W., G. F. Turner, M. R. Idid, R. L. Robinson & G. R. Carvalho, 2000. Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proceedings of the Royal Society B 267: 2273–2280.PubMedGoogle Scholar
  75. Smouse, P. E., J. C. Long & R. R. Sokal, 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35: 627.Google Scholar
  76. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.PubMedPubMedCentralGoogle Scholar
  77. Tajima, F. & M. Nei, 1984. Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution 1: 269–285.PubMedGoogle Scholar
  78. Turner, G. F., O. Seehausen, M. E. Knight, C. J. Allender & R. L. Robinson, 2001. How many species of cichlid fishes are there in African lakes? Molecular Ecology 10: 793–806.PubMedGoogle Scholar
  79. Van Bocxlaer, B., C. Clewing, J. P. M. Etimosundja, A. Kankonda, O. W. Ndeo & C. Albrecht, 2015. Recurrent camouflaged invasions and dispersal of an Asian freshwater gastropod in tropical Africa. BMC Evolutionary Biology 15: 33.PubMedPubMedCentralGoogle Scholar
  80. Van Damme, D. & A. Gautier, 2013. Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution. Biogeosciences 10: 5767–5778.Google Scholar
  81. Vollmer, M. K., R. F. Weiss & H. A. Bootsma, 2002. Ventilation of Lake Malawi/Nyasa. In Odada, E. O. & D. O. Olago (eds), The East African Great Lakes: Limnology, Palaeolimnology and Biodiversity. Advances in Global Change Research, Vol. 12. Kluwer Academic Publishers, Dordrecht: 209–233.Google Scholar
  82. Weigand, A. M., The Volkswagen Foundation Lake Malawi Field School 2012 Consortium & M. Plath, 2014. Prey preferences in captivity of the freshwater crab Potamonautes lirrangensis from Lake Malawi with special emphasis on molluscivory. Hydrobiologia 739: 145–153.Google Scholar
  83. West, K. & A. S. Cohen, 1994. Predator–prey coevolution as a model for the unusual morphologies of the crabs and gastropods of Lake Tanganyika. In Martens, K., B. Goddeeris, & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie, Beiheft Ergebnisse der Limnologie, 44. Schweizerbart, Stuttgart: 267–283.Google Scholar
  84. Wilke, T., B. Wagner, B. Van Bocxlaer, C. Albrecht, D. Ariztegui, D. Delicado, A. Francke, M. Harzhauser, T. Hauffe, J. Holtvoeth, J. Just, M. J. Leng, Z. Levkov, K. Penkman, L. Sadori, A. Skinner, B. Stelbrink, H. Vogel, F. Wesselingh & J. Just, 2016. Scientific drilling projects in ancient lakes: integrating geological and biological histories. Global and Planetary Change 143: 118–151.Google Scholar
  85. Wright, S., 1951. The genetical structure of populations. Annals of Eugenics 15: 323–354.PubMedGoogle Scholar
  86. Yeo, D. C. J., P. K. L. Ng, N. Cumberlidge, C. Magalhães, S. R. Daniels & M. R. Campos, 2008. Global diversity of crabs (Crustacea: Decapoda: Brachyura) in freshwater. Hydrobiologia 595: 275–286.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Ecology & EvolutionJ.W. Goethe-UniversitätFrankfurt am MainGermany
  2. 2.National Museums of Kenya, Nairobi National MuseumNairobiKenya
  3. 3.Department of Botany and ZoologyUniversity of StellenboschMatielandSouth Africa
  4. 4.Crustacean Section, Department of Marine ZoologySenckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
  5. 5.Department of Vertebrate PalaeobiologyJ.W. Goethe-UniversitätFrankfurt am MainGermany
  6. 6.College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina

Personalised recommendations