Advertisement

Hydrobiologia

, Volume 784, Issue 1, pp 305–319 | Cite as

Introduction to the biology and ecology of the freshwater cryophilic dinoflagellate Woloszynskia pascheri causing red ice

  • Kenneth H. NichollsEmail author
Primary Research Paper

Abstract

The rarely reported red pigmented dinoflagellate, Woloszynskia pascheri, is described from frozen surface waters in Ontario, Canada. New information based on light microscopy (LM) is provided on cell organelles (dinokaryon, chromosomes, pigment droplets and ectoplasmic vesicular layer), the thin-walled ice-bound pellicle cysts and thick-walled summer resting cysts. An earlier published suggestion that W. pascheri has morphology similar to that of Gymnodinium cryophilum (Wedemayer, Wilcox et Graham) G. Hansen et Moestrup is refuted. The process of red ice formation depends on a number of weather-related and other environmental factors. The most important of these being a mid-winter thaw that creates pathways (cracks and melted areas of ice) for passage of swimming cells from the water underlying the ice to water on the surface of the ice. In thin-walled ice-bound pellicle cysts, W. pascheri remained viable at ambient air temperatures lower than −20°C for several days and suggests a unique biochemical physiology that needs research. A summary of the historical classification of this species reveals a tumultuous past and the continuing assignment of this species within the genus Woloszynskia appears doubtful, given the rapidly improving state of knowledge about the fine structure and molecular biology of many other similar species.

Keywords

Woloszynskia pascheri Freshwater red tide Cryophilic Psychrophily Red ice Extreme cold tolerance 

Supplementary material

Supplementary material 1 (MP4 12523 kb)

References

  1. Anesi, A., U. Obertegger, G. Hansen, A. Sukenik, G. Flaim & G. Guella, 2016. Comparative analysis of membrane lipids in psychrophilic and mesophilic freshwater dinoflagellates. Frontiers in Plant Science 7 (Article 524), 13 p.Google Scholar
  2. Balzano, S., P. Gourvil, R. Siano, M. Chanoine, S. Lessard, D. Sarno & D. Vaulot, 2012. Diversity of cultured photosynthetic flagellates in the northeast Pacific and Arctic Oceans in summer. Biogeosciences 9: 4553–4571.CrossRefGoogle Scholar
  3. Bravo, I. & R. I. Figueroa, 2014. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2: 11–32.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buzzini, P., E. Branda, M. Goretti & B. Turchetti, 2012. Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiology Ecology 82: 217–241.CrossRefPubMedGoogle Scholar
  5. Caljon, A. G., 1983. Brackish-water phytoplankton of the Flemish lowland. W. Junk Publishers, The Hague: 272 pp.Google Scholar
  6. Carty, S. & M. W. Parrow, 2015. Dinoflagellates. In Wehr, J. D., R. G. Sheath & J. P. Kociolek (eds), Freshwater Algae of North America, Ecology and Classification. Academic Press, New York: 773–807.CrossRefGoogle Scholar
  7. Charvet, S., W. F. Vincent & C. Lovejoy, 2014. Effects of light and prey availability on Arctic freshwater protist communities examined by high-throughput DNA and RNA sequencing. FEMS Microbiology Ecology 88: 550–564.CrossRefPubMedGoogle Scholar
  8. Cid, F. P., J. I. Rilling, S. P. Graether, L. A. Bravo, M. Mora & M. A. Jorquera, 2016. Properties and biotechnological applications of ice-binding proteins in bacteria. FEMS Microbiology Letters. doi: 10.1093/femsle/fnw099.PubMedGoogle Scholar
  9. D’Amico, S., T. Collins, J.-C. Marx, G. Feller & C. Gerday, 2006. Psychrophilic microorganisms: challenges for life. EMBO Reports 7: 385–389.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daugbjerg, N., G. Hansen, J. Larsen & Ø. Moestrup, 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39: 302–317.CrossRefGoogle Scholar
  11. Daugbjerg, N., T. Andreasen, E. Happel, M. S. Pandeirada, G. Hansen, S. C. Craveiro, A. J. Calado & Ø. Moestrup, 2014. Studies on woloszynskioid dinoflagellates VII. Description of Borghiella andersenii sp. nov.: light and electron microscopy and phylogeny based on LSU rDNA. European Journal of Phycology 49: 436–449.CrossRefGoogle Scholar
  12. Dodge, J. D., P. Mariani, A. Paganelli, & R. Trevisan, 1987. Fine structure of the red-bloom dinoflagellate Glenodinium sanguineum, from Lake Tovel (N. Italy). Archiv für Hydrobiologie Supplement 78,2 (Algological Studies 47): 125–138.Google Scholar
  13. Gerrath, J. R. & K. H. Nicholls, 1974. A red snow in Ontario caused by the dinoflagellate, Gymnodinium pascheri. Canadian Journal of Botany 52: 683–685.CrossRefGoogle Scholar
  14. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 9 p.Google Scholar
  15. Hansen, G., Ø. Moestrup & K. R. Roberts, 2000. Light-and ultrastructural observations on the type species of Gymnodinium, G. fuscum (Dinophyceae). Phycologia 39: 365–376.CrossRefGoogle Scholar
  16. Hoham, R. W. & H. U. Ling, 2000. Snow algae: the effects of chemical and physical factors on their life cycles and populations. In Seckbach, J. (ed.), Journey to Diverse Microbial Worlds: Adaptation to Exotic Environments. Springer Science, Dordrecht: 131–145.CrossRefGoogle Scholar
  17. Ishizaki-Nishizawa, O., T. Fujii, M. Azuma, K. Sekiguchi, N. Murata, T. Ohtani & T. Toguri, 1996. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nature Biotechnology 14: 1003–1006.CrossRefPubMedGoogle Scholar
  18. Jaanus, A., S. Hajdu, S. Kaitala, A. Andersson, K. Kaljurand, I. Ledeaine, I. Lips & I. Olenina, 2006. Distribution patterns of isomorphic cold-water dinoflagellates (Scrippsiella/Woloszynskia complex) causing “red tides” in the Baltic Sea. Hydrobiologia 554: 137–146.CrossRefGoogle Scholar
  19. Kargiotidou, A., I. Kappas, A. Tsaftaris, D. Galanopoulou & T. Farmaki, 2010. Cold acclimation and low temperature resistance in cotton: Gossypium hirsutum phospholipase Dα isoforms are differentially regulated by temperature and light. Journal of Expermimental Botany 61: 2991–3002.CrossRefGoogle Scholar
  20. Kim, H. J., J. H. Lee, H. Do & W. Jung, 2013. Production of anti-freeze proteins by cold-adapted yeasts. In Buzzini, P. & R. Margesin (eds), Cold-Adapted Yeasts: Biodiversity, Adaptation Strategies and Biotechnological Significance. Springer-Verlag, Berlin: 259–280.Google Scholar
  21. Kobayashi, M. & T. Okada, 2000. Protective role of astaxanthin against u.v.-B irradiation in the green alga Haematococcus pluvialis. Biotechnology Letters 22: 177–181.CrossRefGoogle Scholar
  22. Kusel-Fetzmann, E., 1979. The algal vegetation of Neusiedlersee. In Löffler, H. (ed.), Neusiedlersee: The Limnology of a Shallow Lake in Central Europe. W. Junk bv Publishers, The Hague: 259–280.Google Scholar
  23. Lundholm, N., S. Ribeiro, T. J. Andersen, T. Koch, A. Godhe, F. Ekelund & M. Ellegaard, 2011. Buried alive - germination of up to a century-old marine protist resting stages. Phycologia 50: 629–640.CrossRefGoogle Scholar
  24. Loeblich Jr., A. R. & A. R. Loeblich III, 1966. Index to the genera, subgenera, and sections of the Pyrrhophyta. Studies in Tropical Oceanography. University of Miami, Institute of Marine Science 3: 1–94.Google Scholar
  25. Matthiessen, J., A. De Vernal, M. Head, Y. Okolodkov, K. Sonneveld & R. Harland, 2005. Modern organic-walled dinoflagellate cysts in Arctic marine environments and their (paleo-) environmental significance. Paläontologische Zeitschrift 79: 3–51.CrossRefGoogle Scholar
  26. Moestrup, Ø., G. Hansen, N. Daugbjerg, G. Flaim & M. D’andrea, 2006. Studies on woloszynskioid dinoflagellates II: On Tovellia sanguinea sp. nov., the dinoflagellate responsible for the reddening of Lake Tovel. N. Italy. European Journal of Phycology 41: 47–65.CrossRefGoogle Scholar
  27. Moestrup, Ø., G. Hansen & N. Daugbjerg, 2008. Studies on woloszynskioid dinoflagellates III: on the ultrastructure and phylogeny of Borghiella dodgei gen. et sp. nov., a cold-water species from Lake Tovel, N. Italy, and on B. tenuissima comb. nov. (syn. Woloszynskia tenuissima). Phycologia 47: 54–78.CrossRefGoogle Scholar
  28. Moestrup, Ø., K. Lindberg & N. Daugbjerg, 2009. Studies on woloszynskioid dinoflagellates V. Ultrastructure of Biecheleriopsis gen. nov., with description of Biecheleriopsis adriatica sp. nov. Phycological Research 57: 221–237.CrossRefGoogle Scholar
  29. Nicholls, K. H., 1973. Observations on red coloured cells of Peridinium wisconsinense Eddy from Buckhorn Lake, Ontario. Transactions of the American Microscopical Society 92: 526–528.CrossRefGoogle Scholar
  30. Nicholls, K. H., W. Kennedy & C. Hammett, 1980. A fish-kill in Heart Lake, Ontario, associated with the collapse of a massive population of Ceratium hirundinella (Dinophyceae). Freshwater Biology 10: 553–561.CrossRefGoogle Scholar
  31. Pandeirada, M. S., S. Craveiro & A. Calado, 2013. Freshwater dinoflagellates in Portugal (W Iberia): a critical checklist and new observations. Nova Hedwigia 97: 321–348.CrossRefGoogle Scholar
  32. Pfiester, L. A., R. A. Lynch & J. J. Skvarla, 1980. Occurrence, growth and SEM portrait of Woloszynskia reticulata Thompson (Dinophyceae). Transactions of the American Microscopical Society 99: 213–217.CrossRefGoogle Scholar
  33. Popovský J. & L. A. Pfiester, 1990. Dinophyceae (Dinoflagellida). In Ettl, H., J. Gerloff, H. Heynig, & D. Mollenhauer, D. (eds), Süßwasserflora von Mitteleuropa. Vol. 6. Gustav Fischer, Jena. 272 p.Google Scholar
  34. Rengefors, K. & C. Legrand, 2001. Toxicity in Peridinium aciculiferum – an adaptivce strategy to outcompete other winter phytoplankton. Limnology and Oceanography 46: 1990–1997.CrossRefGoogle Scholar
  35. Rodriguez, S., A. Couté, L. Tenhage & G. Mascarell, 1999. Peridiniopsis durandi sp. nova (Dinophyta), une nouvelle Dinophycée d’eau d’eau douce responsable de marées rouges. Algological Studies 95: 15–29.Google Scholar
  36. Schiller, J. 1933. Flagellatae, Dinoflagellatae (Peridiniae). In Rabenhorst, L., Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Bd. 10, Abth. 3, Teil 1, Akadem. Verlags., Leipzig. 617 p.Google Scholar
  37. Schiller, J., 1954. Über winterliche pflanzliche Bewohner des Wassers, Eises und des daraufliegenden Schneebreies. Österreichische botanische Zeitschrift 101: 236–284.CrossRefGoogle Scholar
  38. Siano, R., W. Kooistra, M. Montresor & A. Zingone, 2009. Unarmoured and thin-walled dinoflagellates from the Gulf of Naples, with the description of Woloszynskia cincta sp. nov. (Dinophyceae, Suessiales). Phycologia 48: 44–65.CrossRefGoogle Scholar
  39. Stewart, W. G. & C. G. Jenkerson, 1980. A red snow due to the dinoflagellate Gymnodinium pascheri (Suchlandt) Schiller at St. Thomas. Ontario. Ontario Field Biologist 34: 93–94.Google Scholar
  40. von Stosch, H. A., 1973. Observations on vegetative reproduction and sexual cycles of two freshwater dinoflagellates Gynmodinium pseudopalustre Schiller and Woloszynskia apiculata sp. nov. British Phycological Journal 8: 105–134.CrossRefGoogle Scholar
  41. Suchlandt, O., 1916. Dinoflagellaten als Erreger von rotem Schnee. Berichte der Deutschen botanischen Gesellschaft 34: 242–246.Google Scholar
  42. Sundström, A. M., A. Kremp, N. Daugbjerg, M. Moestrup, R. Hansen Ellegaard & S. Hajdu, 2009. Gymnodinium corollarium sp. nov. (Dinophyceae) – a new cold-water dinoflagellate responsible for cyst sedimentation events in the Baltic Sea. Journal of Phycology 45: 938–952.CrossRefPubMedGoogle Scholar
  43. Takahashi, K., Ø. Moestrup, R. W. Jordan & M. wataki, 2015. Two new freshwater woloszynskioids Asulcocephalium miricentonis gen. et sp. nov. and Leiocephalium pseudosanguineum gen. et sp. nov. (Suessiaceae, Dinophyceae) lacking an apical furrow apparatus. Protist 166: 638–658.CrossRefPubMedGoogle Scholar
  44. Taylor, F. J. R., M. Hoppenrath & J. F. Saldarriaga, 2008. Dinoflagellate diversity and distribution. Biodiversity and Conservation 17: 407–418.CrossRefGoogle Scholar
  45. Thessen, A. E., D. J. Patterson & S. A. Murray, 2012. The taxonomic significance of species that have only been observed once: The genus Gymnodinium (Dinoflagellata) as an example. PLoS One 7(8): e44015.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Thomashow, M. F., 1998. Role of cold-repressive genes in plant freezing tolerance. Plant Physiology 118: 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Thompson, R. H., 1950. A new genus and new records of fresh-water Pyrrophyta in the Desmokontae and Dinophyceae. Lloydia 13: 277–299.Google Scholar
  48. Wedemayer, G. J., L. W. Wilcox & L. E. Graham, 1982. Amphidinium cryophilum sp. nov. (Dinophyceae) a new fresheater dinoflagellate. I. species description using light and scanning electron microscopy. J. Phycol. 18: 13–17.CrossRefGoogle Scholar
  49. Wilcox, L. W., 1986. Prokaryotic endosymbionts in the chloroplast stroma of the Dinoflagellate Woloszynskia pascheri. Protoplasma 135: 71–79.CrossRefGoogle Scholar
  50. Wilcox, L. W., 1989. Multilayered structures (MLSs) in two dinoflagellates, Katodinium campylops and Woloszynskia pascheri. Journal of Phycology 25: 785–789.CrossRefGoogle Scholar
  51. Zhang, J., G.-C. Du, Y. Zhang, X.-Y. Liao, M. Wang, Y. Li & J. Chen, 2010. Glutathione protects Lactobacillus sanfransiscensis against freeze-thawing, freeze-drying and cold-treatment. Applied and Environmental Microbiology 76: 2989–2996.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.OntarioCanada

Personalised recommendations