Advertisement

Hydrobiologia

, Volume 721, Issue 1, pp 297–315 | Cite as

A trait-based approach to assess the vulnerability of European aquatic insects to climate change

  • Lorenza ContiEmail author
  • Astrid Schmidt-Kloiber
  • Gaël Grenouillet
  • Wolfram Graf
Primary Research Paper

Abstract

Aquatic insects are the dominant taxon group in most freshwater ecosystems. As temperature is the main driver of their life cycle development, metabolic activity, and geographic distribution, these macroinvertebrates are particularly suitable for large scale and comparative studies of freshwater community responses to climate change. A dataset of bio-ecological traits of 1,942 Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa was used to analyze (1) the relationships among traits, (2) the potential vulnerability of EPT species to climate change, and (3) the geographical occurrence patterns of these potentially endangered species at the scale of European ecoregions. By means of a fuzzy correspondence analysis (FCA), two gradients emerged: (1) a longitudinal gradient, describing successive upstream–downstream features, and (2) a biogeographical gradient, separating endemic and micro-endemic species from widely distributed taxa. Moreover, aquatic insects of southern European ecoregions emerged as those most endangered in terms of potential vulnerability to climate change. Comparative multi-taxon studies provide important new insights into freshwater ecosystem functioning and responses to climate change, and could be the first step toward developing integrative monitoring or assessment tools (e.g., trait-based indicators at the species level) by means of non-arbitrary statistical methods.

Keywords

Vulnerability Aquatic insects Bio-ecological traits Climate change 

Notes

Acknowledgments

This study was supported by the EU-funded project Refresh (FP7 No 244121). EDB is part of the “Laboratoire d’Excellence” (LABEX) entitled TULIP (ANR-10-LABX-41). Constructive comments from the associate editor of Hydrobiologia Núria Bonada, from Monika Gosh as well as from anonymous referees improved the manuscript.

Supplementary material

10750_2013_1690_MOESM1_ESM.doc (212 kb)
Supplementary material 1 (DOC 211 kb)

References

  1. Ausserer, C., 1869. Neurotteri tirolesi colla diagnosi di tutti i generi Europei. Parte I. Pseudoneurotteri. Annuario della Societa di Naturalisti in Modena 4: 71–156.Google Scholar
  2. Allan, J. D. & A. S. Flecker, 1993. Biodiversity conservation in running waters. BioScience 43: 32–43.CrossRefGoogle Scholar
  3. Baird, D. J., M. N. Rubach & P. J. Van den Brinkt, 2008. Trait-based ecological risk assessment (TERA): the new frontier? Integrated Environment Management 4: 2–3.CrossRefGoogle Scholar
  4. Bálint, M., S. Domisch, E. H. M. Engelhardt, P. Haase, S. Lehrian, J. Sauer, K. Theissinger, S. U. Pauls & C. Nowak, 2011. Cryptic biodiversity loss linked to global climate change. Nature Climate Change 1: 313–318.CrossRefGoogle Scholar
  5. Bálint, M., K. Málnás, C. Nowak, J. Geismar, É. Váncsa, L. Polyák, S. Lengyel & P. Haase, 2012. Species history masks the effects of human-induced range loss—unexpected genetic diversity in the endangered giant mayfly Palingenia longicauda. PLoS ONE 7: e31872. doi: 10.1371/journal.pone.0031872.PubMedCrossRefGoogle Scholar
  6. Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.CrossRefGoogle Scholar
  7. Bonada, N., S. Dolédec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implication for future climatic scenarios. Global Change Biology 13: 1658–1671.CrossRefGoogle Scholar
  8. Brauer, F., & F. Löw, 1857. Neuroptera austriacus. Die im Erzherzogthum Oesterreich bis jetzt aufgefundenen Neuropteren nach der analytischen Methode zusammengestellt, nebst einer kurzen Charakteristik aller europäischen Neuropteren Gattungen. Verlag Carl Gerold’s Sohn: 27–31.Google Scholar
  9. Brittain, J. E., 1980. The biology of mayflies. Annual Review of Enthomology 27: 119–147.CrossRefGoogle Scholar
  10. Brittain, J. E., 1991. Life history characteristics as a determinant of the response of mayflies and stoneflies to man-made environmental disturbance. In Alba-Tercedo, J. (ed.), Overview and Strategies of Ephemeroptera and Plecoptera. Sandhill Press, Gainesville, FL: 10–12.Google Scholar
  11. Brittain, J. E., 2008. Mayflies, biodiversity and climate change. In Hauer, F. R., J. A. Stanford & R. L. Newell (eds), International Advances in the Ecology, Zoogeography and Systematics of Mayflies and Stoneflies, Vol. 128. University of California Publications in Entomology, California: 1–14.CrossRefGoogle Scholar
  12. Brown, L. E., R. Céréghino & A. Compin, 2009. Endemic freshwater invertebrates from southern France: diversity, distribution and conservation implications. Biological Conservation 142: 2613–2619.CrossRefGoogle Scholar
  13. Buffagni, A., D. G. Armanini, M. Cazzola, J. Alba-Tercedor, M. J. López-Rodríguez, J. Murphy, L. Sandin & A. Schmidt-Kloiber, 2007. Ephemeroptera Indicator Database. Euro-limpacs project, Workpackage 7—Indicators of ecosystem health, Task 4 [available on internet at www.freshwaterecology.info, version 5.0]. Accessed on November 3, 2011.
  14. Buffagni, A., M. Cazzola, M. J. López-Rodríguez, J. Alba-Tercedor & D. G. Armanini, 2009. Ephemeroptera. In Schmidt-Kloiber, A. & D. Hering (eds), Distribution and Ecological Preferences of European Freshwater Organisms, Vol. 3. Pensoft Publishers, Sofia-Moscow.Google Scholar
  15. Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.CrossRefGoogle Scholar
  16. Collier, K. J., 2008. Temporal patterns in the stability, persistence and condition of stream macroinvertebrate communities: relationships with catchment land-use and regional climate. Freshwater Biology 53: 603–616.CrossRefGoogle Scholar
  17. Culp, J. M., G. D. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff & A. I. Pollard, 2011. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7: 187–197.PubMedCrossRefGoogle Scholar
  18. Dolédec, S. & B. Statzner, 2008. Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impacts. Freshwater Biology 53: 617–634.CrossRefGoogle Scholar
  19. Dolédec, S., B. Statzner & M. Bournard, 1999. Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshwater Biology 42: 737–758.CrossRefGoogle Scholar
  20. Dolédec, S., N. Phillips, M. Scarsbrook, R. H. Riley & C. R. Townsend, 2006. Comparison of structural and functional approaches to determining land use effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25: 44–60.CrossRefGoogle Scholar
  21. Domisch, S., S. C. Jähnig & P. Haase, 2011. Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshwater Biology 56: 2009–2020.CrossRefGoogle Scholar
  22. Domisch, S., M. B. Araujo, N. Bonada, S. U. Pauls, S. C. Jähnig & P. Haase, 2013. Modelling distribution in European stream macroinvertebrates under future climates. Global Change Biology 19: 752–762.PubMedCrossRefGoogle Scholar
  23. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biology Reviews of the Cambridge Philosophical Society 81: 163–182.CrossRefGoogle Scholar
  24. Durance, I. & S. J. Ormerod, 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 13: 942–957.CrossRefGoogle Scholar
  25. Feio, J. M. & S. Dolédec, 2012. Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: a case study in Portugal. Ecological Indicators 15: 236–247.CrossRefGoogle Scholar
  26. Fochetti, R. & J. M. Tierno de Figueroa, 2006. Notes on diversity and conservation of the European fauna of Plecoptera (Insecta). Journal of Natural History 40: 2361–2369.CrossRefGoogle Scholar
  27. Füssel, H.-M., 2007. Vulnerability: A generally applicable conceptual framework for climate change research. Global Environmental Change 17: 155–167.CrossRefGoogle Scholar
  28. Galic, N., G. M. Hengeveld, P. J. Van den Brink, A. Schmolke, P. Thorbek, E. Bruns & H. M. Baveco, 2013. Persistence of aquatic insects across managed landscapes: effects of landscape permeability on re-colonization and population recovery. PLoS ONE 8(1): e54584.PubMedCrossRefGoogle Scholar
  29. Graf, W., & A. Schmidt-Kloiber, 2011. Additions to and update of the Trichoptera Indicator Database [available on internet at www.freshwaterecology.info, version 5.0]. Accessed on November 3, 2011.
  30. Graf, W., J. Murphy, J. Dahl, C. Zamora-Muñoz, M. J. López-Rodríguez & A. Schmidt-Kloiber, 2006. Trichoptera Indicator Database. Euro-limpacs project, Workpackage 7—Indicators of ecosystem health, Task 4 [available on internet at www.freshwaterecology.info, version 5.0]. Accessed on November 3, 2011.
  31. Graf, W., A.W. Lorenz, J. M. Tierno de Figueroa, S. Lücke, M. J. López-Rodríguez, J. Murphy & A. Schmidt-Kloiber, 2007. Plecoptera Indicator Database. Euro-limpacs project, Workpackage 7 - Indicators of ecosystem health, Task 4, www.freshwaterecology.info, version 5.0 (accessed on November 3, 2011).
  32. Graf, W., J. Murphy, J. Dahl, C. Zamora-Muñoz & M. J. López-Rodríguez, 2008a. Trichoptera. In Schmidt-Kloiber, A. & D. Hering (eds), Distribution and Ecological Preferences of European Freshwater Organisms, Vol. 1. Pensoft Publishers, Sofia-Moscow.Google Scholar
  33. Graf, W., D. Stradner & S. Weiss, 2008b. A new Siphonoperla species from the Eastern Alps (Plecoptera: Chloroperlidae), with comments on the genus. Zootaxa 1891: 31–38.Google Scholar
  34. Graf, W., A. W. Lorenz, J. M. Tierno de Figueroa, S. Lücke, M. J. López-Rodríguez & C. Davies, 2009a. Plecoptera. In Schmidt-Kloiber, A. & D. Hering (eds), Distribution and Ecological Preferences of European Freshwater Organisms, Vol. 2. Pensoft Publishers, Sofia-Moscow.Google Scholar
  35. Graf, W., J. Waringer & S. U. Pauls, 2009b. A new feeding group within larval Drusinae (Trichoptera: Limnephilidae): the alpinus-group sensu Schmid, 1956, including larval descriptions of Drusus franzi Schmid, 1956 and Drusus alpinus (Meyer-Dür, 1875). Zootaxa 2031: 53–62.Google Scholar
  36. Graf, W., M. Kučinič, A. Previšič, S. U. Pauls & J. Waringer, 2011. The larva of Ecclisopteryx malickyi Moretti, 1991 (Trichoptera: Limnephilidae: Drusinae) with comments on the genus. Zoosymposia 5: 136–143.Google Scholar
  37. Haidekker, A. & D. Hering, 2008. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquatic Ecology 42: 463–481.CrossRefGoogle Scholar
  38. Hannah, D. M., L. E. Brown, A. M. Milner, A. M. Gurnell, G. R. McGregor, G. E. Petts, B. P. G. Smith & D. L. Snook, 2007. Integrating climate–hydrology–ecology for alpine river systems. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 636–656.CrossRefGoogle Scholar
  39. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.PubMedCrossRefGoogle Scholar
  40. Hering, D., A. Schmidt-Kloiber, J. Murphy, S. Lücke, C. Zamora-Muñoz, M. J. López-Rodríguez, T. Huber & W. Graf, 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis of European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquatic Science 71: 3–14.CrossRefGoogle Scholar
  41. Hodkinson, I. D. & J. J. Jackson, 2005. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management 35: 649–666.PubMedCrossRefGoogle Scholar
  42. Hof, C., M. Brändle & R. Brandl, 2008. Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Global Ecology and Biogeography 17: 539–546.CrossRefGoogle Scholar
  43. Hof, C., M. Brändle, D. M. Dehling, M. Munguía, R. Brandl, M. B. Araújo & C. Rahbek, 2012. Habitat stability affects dispersal and the ability to track climate change. Biological Letters 8: 639–643.CrossRefGoogle Scholar
  44. Illies, J., 1978. Limnofauna Europaea. Gustav Fisher, New York.Google Scholar
  45. IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  46. Jackson, R. B., S. R. Carpenter, C. N. Dahm, D. M. McKnight, R. J. Naiman, S. L. Postel & S. W. Runninn, 2001. Water in a changing world. Ecological Applications 11: 1027–1045.CrossRefGoogle Scholar
  47. Jenkins, M., 2003. Prospects for biodiversity. Science 302: 1175–1177.PubMedCrossRefGoogle Scholar
  48. Johns, T. C., J. M. Gregory, W. J. Ingram, C. E. Johnson, A. Jones, J. A. Lowe, J. F. B. Mitchell, D. L. Roberts, D. M. H. Sexton, D. S. Stevenson, S. F. B. Tett & M. J. Woodage, 2003. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dynamics 20: 593–612.Google Scholar
  49. Kazanci, N. & M. Dügel, 2008. Prediction of global climate change impact on structure of aquatic insect assemblages by using species optimum and tolerance values of temperature. Review of Hydrobiology 2: 73–80.Google Scholar
  50. Keyghobadi, N., 2007. The genetic implications of habitat fragmentation for animals. Canadian Journal of Zoology 85: 1049–1064.CrossRefGoogle Scholar
  51. Kotiaho, J. S., A. Kaitala & J. Paivinen, 2005. Predicting the risk of extinction from shared ecological characteristics. Proceedings of the National Academy of Sciences of the States of America-Biological Sciences 102: 1963–1967.CrossRefGoogle Scholar
  52. Kühtreiber, J., 1934. Plekopterenfauna Nordtirols. Sonderabdruck aus den Berichten des Naturwissenschaftlich-Medizinischen Vereines in Innsbruck, XLIII/XLIV (1931/32 - 1933/34): 1–214.Google Scholar
  53. Lande, R., 1993. Risk of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist 142: 911–927.CrossRefGoogle Scholar
  54. Lawrence, J. E., K. B. Lunde, R. D. Mazor, L. A. Bêche, E. P. McElarvy & V. H. Resh, 2010. Long-term macroinvertebrate responses to climate change: implications for biological assessment in mediterranean-climate streams. Journal of North American Benthological Society 29: 1424–1440.CrossRefGoogle Scholar
  55. Lillehammer, A., J. E. Brittain, S. J. Saltveit & P. S. Nielsen, 1989. Egg development, nymphal growth and life cycle strategies in Plecoptera. Holarctic Ecology 12: 173–186.Google Scholar
  56. Malmqvist, B., 2000. How does wing length relate to distribution patterns of stoneflies (Plecoptera) and mayflies (Ephemeroptera)? Biological Conservation 93: 271–276.CrossRefGoogle Scholar
  57. Marten, M., 1990. Interspecific variation in temperature dependence of egg development of five congeneric stonefly species (Protonemura Kempny, 1898, Nemouridae, Plecoptera). Hydrobiologia 199: 157–171.CrossRefGoogle Scholar
  58. Menezes, S., J. B. Baird & A. M. V. M. Soares, 2010. Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology 47: 711–719.CrossRefGoogle Scholar
  59. Moog, O., 1995. Fauna Aquatica Austriaca, Lieferung Mai/95. Wasserwirtschaftskataster, Bundesministerium fur Land- und Forstwirtschaft, Wien.Google Scholar
  60. Müller-Peddinghaus, E. & D. Hering, 2013. The wing morphology of limnephilid caddisflies in relation to their habitat preferences. Freshwater Biology 58: 1138–1148.CrossRefGoogle Scholar
  61. Naiman, R. J. & M. G. Turner, 2000. A future perspective on North America’s freshwater ecosystems. Ecological Applications 10: 958–970.CrossRefGoogle Scholar
  62. Perkins, D. M., J. Reiss, G. Yvon-Durocher & G. Woodward, 2010. Global change and food webs in running waters. Hydrobiologia 657: 181–198.CrossRefGoogle Scholar
  63. Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.CrossRefGoogle Scholar
  64. Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of North American Benthological Society 25: 730–755.Google Scholar
  65. Rahel, F. J., 2002. Homogenization of freshwater faunas. Annual Review of Ecology and Systematics 33: 291–325.CrossRefGoogle Scholar
  66. Resh, V. H. & D. M. Rosenberg, 1989. Spatial-temporal variability and the study of aquatic insects? The Canadian Entomologist 121: 941–963.CrossRefGoogle Scholar
  67. Revenga, C., I. Campbell, R. Abell, P. de Villiers & M. Bryer, 2005. Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 360: 397–413.CrossRefGoogle Scholar
  68. Rijnsdorp, A. D., M. A. Peck, G. H. Engelhard, C. Mollmann & J. K. Pinnegar, 2009. Resolving the effect of climate change on fish populations. International Council for the Exploitation of the Sea Journal of Marine Science 66: 1570–1583.Google Scholar
  69. Rouse, W. R., M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. Marsh, M. McDonald, B. J. Nicholson, N. T. Roulet & J. P. Smol, 1997. Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrological Processes 11: 873–902.CrossRefGoogle Scholar
  70. Russev, B. K., 1987. Ecology, life history and distribution of Palingenia longicauda (Olivier) (Ephemeroptera). Tijdschrift voor Entomologie 130: 109–127.Google Scholar
  71. Sala, O. E., F. S. Chapin, J. J. Armesto, R. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Skyes, B. H. Walker, M. Wamker & D. H. Hall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.PubMedCrossRefGoogle Scholar
  72. Sartori, M., & P. Landolt, 1998. Memorandum concernant la candidature de Palingenia longicauda (Olivier, 1791) (Insecta: Ephemeroptera) a son inscription en annexe de la Convention de Berne. Document T-PVS (98) 15. Council of Europe, Strasbourg.Google Scholar
  73. Schindler, D. W., 2001. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58: 18–29.CrossRefGoogle Scholar
  74. Schmidt-Kloiber, A., & D. Hering (eds), 2012. The taxa and autoecology database for freshwater organisms, version 5.0 [available on internet at www.freshwaterecology.info]. Accessed on November 3, 2011.
  75. Statzner, B. & L. A. Bêche, 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80–119.CrossRefGoogle Scholar
  76. Statzner, B., A. G. Hildrew & V. H. Resh, 2001. Species traits and environmental constraints: entomological research and the history of ecological theory. Annual Review of Entomology 46: 291–316.PubMedCrossRefGoogle Scholar
  77. Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174.CrossRefGoogle Scholar
  78. Sweeney, B. W., J. K. Jackson, J. D. Newbold & D. H. Funk, 2001. Climate change and the life histories and biogeography of aquatic insects in eastern North America. In Firth, P. & S. P. Fisher (eds), Global Climate Change and Freshwater Ecosystems. Springer-Verlag, Berlin.Google Scholar
  79. Tierno de Figueroa, J. M., M. J. López-Rodríguez, A. Lorenz, W. Graf, A. Schmidt-Kloiber & D. Hering, 2010. Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodiversity Conservation 19: 1269–1277.CrossRefGoogle Scholar
  80. Tilman, D., 2001. Functional diversity. In Levin, S. A. (ed.), Encyclopedia of Biodiversity. Academic Press, San Diego, CA: 109–120.CrossRefGoogle Scholar
  81. Tobias, W., 1967. Zur Schlüpfrhythmik von Köcherfliegen (Trichoptera). Oikos 18: 55–75.CrossRefGoogle Scholar
  82. Tobias, W., 1971. Der zeitliche Ablauf des Schlüpfens bei Köcherfliegen (Insecta, Trichoptera). Natur und Museum 101: 155–166.Google Scholar
  83. Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31: 265–275.CrossRefGoogle Scholar
  84. Travis, J. M. J., 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society London B 270: 467–473.CrossRefGoogle Scholar
  85. Turner II, B. L., R. E. Kasperson, P. A. Matson, J. J. McCarthy, R. W. Corell, L. Christensen, N. Eckley, J. X. Kasperson, A. Luers, M. L. Martello, C. Polsky, A. Pulsipher & A. Schiller, 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America 100: 8074–8079.PubMedCrossRefGoogle Scholar
  86. Usseglio-Polatera, P., 1991. Représentation graphique synthétique de la signification écologique d’un peuplement. Application aux macroinvertébrés du Rhône à Lyon. Bulletin d’écologie 22: 195–202.Google Scholar
  87. Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205.CrossRefGoogle Scholar
  88. Verberk, W. C. E. P., C. G. E. van Noordwijk & A. Hildrew, 2013. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32: 531–547.CrossRefGoogle Scholar
  89. Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.PubMedCrossRefGoogle Scholar
  90. Waringer, J., W. Graf, S. U. Pauls, A. Previšić & M. Kučinić, 2010. A larval key to the Drusinae species of Austria, Germany, Switzerland and the Dinaric Western Balkan. Denisia 29: 323–406.Google Scholar
  91. Watanabe, N. C., I. Mori & I. Yoshitaka, 1999. Effect of temperature on the mass emergence of the mayfly, Ephron shigae, in a Japanese river (Ephemeroptera: Polymitarcydae). Freshwater Biology 41: 537–541.CrossRefGoogle Scholar
  92. Zelinka, M. & P. Marvan, 1961. Zur präzisierung der biologischen klassifikation der reinheit fließender gewässer. Archiv für Hydrobiologie 57: 389–407.Google Scholar
  93. Zwick, P., 1992. Stream habitat fragmentation—a threat to biodiversity. Biodiversity and Conservation 1: 80–97.CrossRefGoogle Scholar
  94. Zwick, P., 2002. The stonefly (Insecta: Plecoptera) seed bank theory: new experimental data. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 28: 1317–1323.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lorenza Conti
    • 1
    Email author
  • Astrid Schmidt-Kloiber
    • 2
  • Gaël Grenouillet
    • 1
  • Wolfram Graf
    • 2
  1. 1.CNRS, UPS, ENFA, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique)Université de Toulouse, UPSToulouse Cedex 9France
  2. 2.Institute of Hydrobiology and Aquatic Ecosystem Management, Department of Water, Atmosphere, EnvironmentBOKU-University of Natural Resources and Life SciencesViennaAustria

Personalised recommendations