Advertisement

Radar Detection of Ice and Rime Deposits on Cables of Overhead Power Transmission Lines1

  • V. A. KasimovEmail author
  • R. G. Minullin
Article
  • 6 Downloads

An impact of ice and rime deposits on the propagation of radar signals along the overhead power transmission lines is studied. The results of long-term multiyear experimental studies are discussed. The dielectric characteristics of ice and rime deposits are described. The effect of wall thickness, density and temperature of ice and rime deposits on attenuation and delay of pulse radar signals are simulated. A method for solving an inverse problem is proposed, according to which the wall thickness and density of ice and rime deposits covering the cables are determined based on the variations in radar signal attenuation and delays. The radar device readings are compared to those of the load sensor when monitoring the formation of ice and rime deposits on an active power transmission line. The developed technique helps determining the optimal regimes of timely melting ice and rime deposits on the cables of overhead power transmission lines to prevent emergency situations.

Keywords

overhead power transmission lines cables ice and rime deposits wall thickness density radar detection method pulse signal attenuation delay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Minullin, E. Yu. Abdullazyanov, V. A. Kasimov, and M. R. Yarullin, “Modern methods for detecting ice on the cables of overhead power transmission lines. Part 1. Methods of forecasting and weighing of cables,” Izv. Vuzov Probl. Énerget., Nos. 7 – 8, 68 – 78 (2013).Google Scholar
  2. 2.
    R. G. Minullin, E. Yu. Abdullazyanov, V. A. Kasimov, and M. R. Yarullin, “Modern methods for detecting ice on the cables of overhead power transmission lines. Part 2. Radar detection method,” Izv. Vuzov Probl. Énerget., Nos. 9 – 10, 50 – 58 (2013).Google Scholar
  3. 3.
    R. G. Minullin, V. A. Kasimov, T. K. Filimonova, and M. R. Yarullin, “Radar detection of ice on overhead power transmission lines. Part 1. Ice detection methods,” Nauch.-Tekhn. Vedom. SPbGPU. Inform. Telekom. Upravl., No. 2(193), 61 – 73 (2014).Google Scholar
  4. 4.
    R. G. Minullin and I. Sh. Fardiyev, Radar Diagnostics of Overhead Power Transmission Lines. Monograph [in Russian], Izd. KGÉU, Kazan (2008).Google Scholar
  5. 5.
    R. G. Minullin, et al., Detection of Ice Formations on Power Transmission Lines by Radar Sensing. Monograph [in Russian], Izd. KGÉU, Kazan (2010).Google Scholar
  6. 6.
    R. G. Minullin, Radar Monitoring of Ice and Rime Deposits and Damages on the Cables of Overhead Power Transmission Lines [in Russian], NTF Énergoprogress, Moscow (2017).Google Scholar
  7. 7.
    G. M. Shalyt, Fault Site Detection in Electrical Networks [in Russian], Énergoizdat, Moscow (1982).Google Scholar
  8. 8.
    G. V. Mikutskii and V. S. Skitaltsev, High-Frequency Communication over Power Transmission Lines [in Russian], Énergiya, Moscow (1977).Google Scholar
  9. 9.
    Yu. P. Shkarin, “Simplified calculation of linear path attenuation of communication channels over the overhead lines during icing,” Élektrichestvo, No. 2, 12 – 15 (1987).Google Scholar
  10. 10.
    Standard of PJSC “FSK EES” STO 56947007-33.060.40.052–2010. Methodical Recommendations Concerning the Calculation of Parameters and Selection of Schemes of High-Frequency Paths along 35 – 750 kV ac-Power Transmission Lines. http://www.fsk-ees.ru/upload/docs/sto_56947007-33.060.40.052-2010_red.pdf.
  11. 11.
    E. Pounder, The Physics of Ice [Russian translation], Mir, Moscow (1967).Google Scholar
  12. 12.
    V. V. Bogorodskii and V. P. Gavrilo, Ice. Physical Properties, Modern Glaciology Methods [in Russian], Gidrometeoizdat, Leningrad (1960).Google Scholar
  13. 13.
    M. V. Kostenko, A. S Perelman, and Yu. P. Shkarin, Wave Processes and Electric Interference in High-Voltage Multi-Cable Lines [in Russian], Énergiya, Moscow (1973).Google Scholar
  14. 14.
    G. I. Shimko, “Study of dielectric properties of ice and rime on communication lines,” Élektrosvyaz, No. 7, 21 – 29 (1956).Google Scholar
  15. 15.
    M. V. Kostenko, L. S. Perelman, and G. I. Shimko, “Procedure for calculating wave channels parameters of overhead multi-cable lines with approximated consideration of ice formations on the cables,” Izv. AN SSSR. Énerget. Transport, No. 1 (1969).Google Scholar
  16. 16.
    N. A. Armand and V. M. Polyakov, Radio Propagation and Remote Sensing of the Environment, CRC Press (2004).Google Scholar
  17. 17.
    G. N. Zatsepina, Properties and Structure of Water [in Russian], Izd. MGU, Moscow (1974).Google Scholar
  18. 18.
    N. Maeno, Science of Ice [Russian translation], Mir, Moscow (1988).Google Scholar
  19. 19.
    V. F. Petrenko, Electrical Properties of Ice. Special Report, (1993).Google Scholar
  20. 20.
    S. Evans, “Dielectric properties of ice and snow — A review,” J. Glaciol., 5, 773 – 792 (1965).CrossRefGoogle Scholar
  21. 21.
    V. G. Artemov, and A. A. Volkov, “Water and ice dielectric spectra scaling at 0°C,” Ferroelectrics, 466(1), 158 – 165 (2014). DOI:  https://doi.org/10.1080/00150193.2014.895216.CrossRefGoogle Scholar
  22. 22.
    A. Von Hippel, “The dielectric relaxation spectra of water, ice, and aqueous solutions, and their interpretation (in 3 parts),” IEEE Trans. Electr. Insul., 23(5), 801 – 840 (1988).CrossRefGoogle Scholar
  23. 23.
    I. Takei and N. Maeno, “Dielectric and mechanical alterations of snow properties near the melting temperature,” Can. J. Phys., 81, 233 – 239 (2003).CrossRefGoogle Scholar
  24. 24.
    W. H. Stiles and F. T. Ulaby, “Dielectric properties of snow: Proc. of the Workshop on the Properties of Snow, Snowbird, Utah, April 8 – 10 (1981),” CRREL Special report, No. 82-18, 91 – 103 (1981).Google Scholar
  25. 25.
    M. Hallikainen, F. T. Ulaby, and M. Abdelrazik, “Dielectric properties of snow in the 3 – 37 GHz range,” IEEE Trans. Anten. Propag., 34(11), 1329 – 1340 (1986).CrossRefGoogle Scholar
  26. 26.
    Z. Yosida et al., “Physical studies on deposited snow. Dielectric properties,” Contrib. Inst. Low Temp. Sci., 14, 1 – 33 (1958).Google Scholar
  27. 27.
    A. Sihvola, E. Nyfors, and M. Tiuri, “Mixing formulae and experimental results for the dielectric constant of snow,” J. Glaciol., 31(108), 163 – 170 (1985).CrossRefGoogle Scholar
  28. 28.
    A. Sihvola, Electromagnetic Mixing Formulas and Applications, IEE (1999).Google Scholar
  29. 29.
    Electrical Installation Code. 7th Edition [in Russian], NTs ÉNAS, Moscow (2003).Google Scholar
  30. 30.
    L. M. Kesselman, Fundamentals of Mechanics of Overhead Power Transmission Lines [in Russian], Énergoatomizdat, Moscow (1992).Google Scholar
  31. 31.
    V. A. Kasimov, Multichannel Radar Detection Method of Monitoring Ice Formation on the Cables of Overhead Power Transmission Lines. Candidate’s Thesis [in Russian], Kazan (2015).Google Scholar
  32. 32.
    R. G. Minullin, V. A. Kasimov, and M. R. Yarullin, “Analysis of radar equipment indications and weight sensors indications during detecting ice deposits on power lines,” in: Proc. 16th Int. Workshop on Atmospheric Icing of Structures (IWAIS-2015), Uppsala, June 28 to July 3, pp. 105 – 107 (2015).Google Scholar
  33. 33.
    R. G. Minullin, V. A. Kasimov, and M. R. Yarullin, “Comparison of radar equipment readings and weight sensors indications during ice deposits detection on overhead transmission lines,” in: 2016 2nd Int. Conf. on Industrial Eng., Appl. Manufact. (ICIEAM), IEEE Conf. Publ., pp. 1 – 6 (2016). DOI:  https://doi.org/10.1109/ICIEAM.2016.7911426.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kazan State Power Engineering UniversityKazanRussia

Personalised recommendations