Combining the Signals of a Set of Separate Relay Protection Starters1

  • M. V. SharyginEmail author
  • A. L. Kulikov

For full use of information in multiparameter relay protection it is advisable to use statistical detection theory and a Bayesian criterion of minimal average decision risk. A method for combining the signals from a set of separate relay protection starters is proposed in order to improve its sensitivity. It is shown that combining the measurements of the univariate relay protection measurement devices yields the same result as combining the binary signals of starters using these measurement devices.


multiparameter relay protection information approach starters likelihood ratio test setting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. Ya. Lyamets, M. V. Martynov, G. S. Nudel’man, Yu. V. Romanov, and P. I. Voronov, “Learning relay protection. Part 2. An information portrait of a multimodule discriminator structure,” Élektrichestvo, No. 3, 12 – 18 (2012).Google Scholar
  2. 2.
    Yu. Ya. Lyamets, G. S. Nudel’man, I. S. Podshivalina, and Yu. V. Romanov, “Effects of multidimensionality in relay protection,” Élektrichestvo, No. 9, 48 – 54 (2011).Google Scholar
  3. 3.
    A. N. Golubev, O. A. Dobryagina, T. Yu. Shadrikova, and V. A. Shuin, “Multiparameter current protection from shorting to ground of 6 – 10 kV cable networks,” Élektr. Stantsii, No. 8, 36 – 45 (2017).Google Scholar
  4. 4.
    I. V. Nagai and V. I. Nagai, “Construction of multiparameter reserve protection of 6 – 10 kV electrical distribution networks,” Énergetik, No. 2, 18 – 21 (2013).Google Scholar
  5. 5.
    Q. Gao and S. Rovnyak, “Decision trees using synchronized phasor measurements for wide-area response-based control,” IEEE Trans. Power Syst., 26(2), 855 – 861 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. Terzija, G. Valverde, D. Cai, P. Regulski, Y. Madani, J. Fitch, S. Skok, M. Begovic, and A. Phadke, “Wide-area monitoring, protection, and control of future electric power networks,” Proc. IEEE, 99(1), 80 – 93 (2011).CrossRefGoogle Scholar
  7. 7.
    M. V. Sharygin and A. L. Kulikov, Protection and Automation of Electric Power Systems with Active Industrial Consumers [in Russian], NIU RANKhiGS, Nizhnyi Novgorod (2017).Google Scholar
  8. 8.
    A. L. Kulikov and M. V. Sharygin, “Determination of relay protection and automation settings based on a statistical Bayesian hypothesis testing method,” Élektrichestvo, No. 7, 20 – 29 (2017).Google Scholar
  9. 9.
    A. L. Kulikov and M. V. Sharygin, “Ensuring selectivity of relay protection in electrical power systems based on a Bayesian hypothesis testing method,” Élektrichestvo, No. 9, 24 – 33 (2017).Google Scholar
  10. 10.
    A. L. Kulikov and M. V. Sharygin, “Use of a statistical approach for adapting shutoff automation of consumers to their actual load,” Élektr. Stantsii, No. 10, 36 – 40 (2016).Google Scholar
  11. 11.
    A. M. Fedoseev and M. A. Fedoseev, Relay Protection of Electric Power Systems: a Textbook for Universities, 2nd Edition [in Russian], Énergoatomizdat, Moscow (1992).Google Scholar
  12. 12.
    H. L. van Trees, Detection, Estimation, and Modulation Theory, Vol. I. Detection, Estimation, and Linear Modulation [Russian translation], Sovetskoe Radio, Moscow (1972).Google Scholar
  13. 13.
    M. V. Sharygin, “Organizing principles for a bank of measures for controlling the reliability of electrical supply,” Prom. Énerget., No. 9, 6 – 9 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.R. E. Alekseev Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia

Personalised recommendations