Power Technology and Engineering

, Volume 52, Issue 5, pp 605–613 | Cite as

Topological Interlocking of Operational Switching

  • I. A. GolovinskiiEmail author
  • M. Yu. D’yachenko
  • M. I. Londer
  • A. V. Tumakov

Positions of interconnected switching devices determine the topological interlocks of switching operations at substations. The paper reviews two approaches for implementing programmable topological interlocks: offline and online. The paper highlights the disadvantages of offline and flexibility of online solutions. Anew object-topology approach to modeling of electrical networks is described. It allows applying the standard rules of topological interlocking automatically, both offline and online. An example of such automation is provided.


operational dispatch management switching control interlocking of switching operations topological interlocking digital substation switching diagram topology analysis object-topology approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RD 34.35.512. Instructions for Operating Real-Time Safety Interlocks in High-Voltage Electrical Switchgear [in Russian], approved by the USSR Ministry of Energy on October 05, 1979.Google Scholar
  2. 2.
    Operational Interlocking Organization Procedure at New Generation Substations [in Russian], approved by the Limited Liability Federal Grid Company of Unified Energy System (FGC UES, LLC) on May 05, 2010, No. 236 r. 3. State Standard GOST R 55608–2013. Unified power system and isolated power systems. Operational dispatch management. Switching at electrical installations. General requirements [in Russian], Moscow (2014).Google Scholar
  3. 4.
    SO 153-34.20.505–2003. Instructions for Switching at Electrical Installations [in Russian], NTs ÉNAS Publishing, Moscow (2004).Google Scholar
  4. 5.
    Rules on Labor Safety when Operating Electrical Installations (POTEU) [in Russian], approved by order No. 328n of the Ministry of Labor and Social Protection of the Russian Federation dated July 24, 2013; effective date: August 04, 2014.Google Scholar
  5. 6.
    E. Humby, Programs from Decision Tables [Russian translation], Mir, Moscow (1976).zbMATHGoogle Scholar
  6. 7.
    A. V. Trofimov, A. M. Polyakov, G. A. Abdukhalilov, and R. A. Gorbunov, “Generating operational interlocking algorithms based on the information models of single-line diagrams of electrical installations,” Élektr. Stantsii, No. 7(1008), 2 – 5 (2015).Google Scholar
  7. 8.
    G. A. Abdukhalilov, Development of the Computer-Aided Procedure for Designing an Operational Interlocking of Digital Substations. Candidate’s Thesis [in Russian], MÉI, Moscow (2017).Google Scholar
  8. 9.
    V. I. Levin and B. V. Biryukov, “Another look at the history of discovering logical modeling of the technical devices,” Vestn. Mosk. Univ. Ser. 7. Filos., No. 1, 37 – 52 (2009).Google Scholar
  9. 10.
    V. A. Rosenberg, “Interlocking problem and contact groups transformation,” Avtomat. Telemekh., No. 1, 47 – 54 (1940).Google Scholar
  10. 11.
    B. I. Aranovich, Matrix Methods of Analysis and Synthesis of Contact-Relay Circuits. Candidate’s Thesis [in Russian], LÉTI, Leningrad (1947).Google Scholar
  11. 12.
    B. I. Aranovich, “Utilization of matrix methods in the aspects of structural analysis of contact-relay circuits,” Avtomat. Telemekh., 10(6), 437 – 451 (1949).MathSciNetGoogle Scholar
  12. 13.
    A. G. Lunts, “Application of matrix Boolean algebra to analysis and synthesis of contact-relay circuits,” Dokl. AN SSSR, 70(3), 421 – 423 (1950).Google Scholar
  13. 14.
    A. G. Lunts, “Synthesis and analysis of contact-relay circuits by means of characteristic functions,” Dokl. AN SSSR, 75(2), 201 – 204 (1950).Google Scholar
  14. 15.
    A. G. Lunts, “Algebraic methods of analysis and synthesis of contact circuits,” Izv. AN SSSR. Ser. Matem., 16(5), 405 – 426 (1952).Google Scholar
  15. 16.
    Yu. Ya. Kupershmidt, Yu. Ya. Lyubarskii, and V. G. Ornov, “Principles of developing a universal programmable switching training simulator,” Élektr. Stantsii, No. 11, 48 – 52 (1982).Google Scholar
  16. 17.
    I. A. Golovinskii, “Object-oriented approach to developing programs for analyzing switching diagrams of electrical networks,” Izv. RAN. Énerget., No. 2, 46 – 56 (2001).Google Scholar
  17. 18.
    I. A. Golovinskii, “Methods of analyzing topology of switching diagrams of electrical networks,” Élektrichestvo, No. 3, 10 – 18 (2005).Google Scholar
  18. 19.
    I. A. Golovinskii, “Logic and topology of switchover interlocks in electrical networks,” Int. J. Appl. Eng. Res., 11(3), 2007 – 2015 (2016), Scholar
  19. 20.
    Platform for solving power engineering problems KOTMI-14, DECIMA,
  20. 21.
    I. A. Golovinskii, “Topological object-association model for simulating electrical networks,” Int. J. Appl. Eng. Res., 11(12), 7857 – 7867 (2016), Scholar
  21. 22.
    IEC 61970-301. Energy management system application program interface (EMS-API), Part 301. Common information model (CIM) base.Google Scholar
  22. 23.
    Certificate of State Registration of Computer Software No. 2011613357, A. V. Tumakov, I. A. Golovinskii, M. I. Londer, and M. Yu. Dyachenko, Universal topological processor for electrical network intellectual management systems (UNITOP) [in Russian], registration date April 29, 2011.Google Scholar
  23. 24.
    A. A. Usitvina, Study of the Operational Safety Interlocking Systems at Energy Facilities with Voltage Exceeding 1 kV to Improve Power Safety and Efficiency. Candidate’s Thesis [in Russian], MÉI, Moscow (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. A. Golovinskii
    • 1
    Email author
  • M. Yu. D’yachenko
    • 2
  • M. I. Londer
    • 3
  • A. V. Tumakov
    • 3
  1. 1.North-Caucasus Federal UniversityStavropolRussia
  2. 2.JSC “IMPEDANCE”, Stavropol TerritoryKislovodskRussia
  3. 3.JSC “IMPEDANCE”MoscowRussia

Personalised recommendations