Power Technology and Engineering

, Volume 52, Issue 5, pp 597–604 | Cite as

The Effect of Combining Information of Relay Protection Fault Detectors1

  • M. V. SharyginEmail author
  • A. L. Kulikov

The mass introduction of new digital relay protection (RP) devices and the communications systems between them potentially makes it possible to increase the sensitivity of relay protection due to the introduction of multidimensional measurements. Amethod is proposed for effective combination of the measurements of a set of individual fault detectors, increasing the recognizability of RP modes. The method is based on the statistical theory of detection, the Bayesian criterion of minimizing the mean risk of decision-making.


multi-parametric relay protection information approach fault detectors likelihood ratio test setting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. Ya. Lyamets, M. V. Martynov, G. S. Nudel’man, Yu. V. Romanov, and P. I. Voronov, “Experimental relay protection. Part 2. Informational portrait of a multimodular recognition structure,” Élektrichestvo, No. 3, 12 – 18 (2012).Google Scholar
  2. 2.
    Yu. Ya. Lyamets, G. S. Nudel’man, I. S. Podshivalina, and Yu. V. Romanov, “Effects of multidimensionality in relay protection,” Élektrichestvo, No. 9, 48 – 54 (2011).Google Scholar
  3. 3.
    A. N. Golubev, O. A. Dobryagina, T. Yu. Shadrikova, and V. A. Shuin, “Multi-parameter current protection against earth faults of 6 – 10 kV cable networks,” Élektr. Stantsii, No. 8, 36 – 45 (2017).Google Scholar
  4. 4.
    I. V. Nagai and V. I. Nagai, “Construction of multi-parameter reserve protection of 6 – 10 kV electric distribution networks,” Élektrik, No. 2, 18 – 21 (2013).Google Scholar
  5. 5.
    Q. Gao and S. Rovnyak, “Decision trees using synchronized phasor measurements for wide-area response-based control,” IEEE Trans. Power Syst., 26(2), 855 – 861 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. Terzija, G. Valverde, D. Cai, P. Regulski, Y. Madani, J. Fitch, S. Skok, M. Begovic and A. Phadke, “Wide-area monitoring, protection, and control of future electric power networks,” Proc. IEEE, 99(1), 80 – 93 (2011).CrossRefGoogle Scholar
  7. 7.
    G. Van Trees, Detection, Estimation, and Modulation Theory. Vol. 1. Detection, Estimation, and Linear Modulation Theory [Russian translation], V. I. Tikhonov, ed., Sovetskoe radio, Moscow (1972).Google Scholar
  8. 8.
    M. V. Sharygin and A. L. Kulikov, Protection and Automatic Equipment of Power Supply Systems with Active Industrial Consumers [in Russian], NIU RANKhiGS, Nizhny Novgorod (2017).Google Scholar
  9. 9.
    A. L. Kulikov and M. V. Sharygin, “Determining the setting for automated relay protection equipment based on the statistical Bayesian method for checking hypotheses,” Élektrichestvo, No. 7, 20 – 29 (2017).Google Scholar
  10. 10.
    A. L. Kulikov and M. V. Sharygin, “Ensuring the selectivity of relay protection in power supply systems based on the Bayesian method for checking hypotheses,” Élektrichestvo, No. 9, 24 – 33 (2017).Google Scholar
  11. 11.
    A. L. Kulikov and M. V. Sharygin, “Application of the statistical approach for adaptation of automated consumer disconnect equipment to their actual load,” Élektr. Stantsii, No. 12, 36 – 40 (2016).Google Scholar
  12. 12.
    A. M. Fedoseev and M. A. Fedoseev, Relay Protection of Electrical Power Systems: Textbook for Higher Education Institutions. 2nd ed. [in Russian], Énergoatomizdat, Moscow (1992).Google Scholar
  13. 13.
    M. V. Sharygin, “Principles of organization of a bank of actions for management of power supply reliability,” Prom. Énerget., No. 9, 6 – 9 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.R. E. Alekseev Nizhnii Novgorod State Technical UniversityNizhnii NovgorodRussia

Personalised recommendations