Advertisement

Power Technology and Engineering

, Volume 52, Issue 5, pp 563–569 | Cite as

Development and Evaluation of a Method of Reducing Erosion Wear of Impellers

  • I. Yu. GavrilovEmail author
  • V. A. Tishchenko
  • V. V. Popov
Article
  • 6 Downloads

Results of numerical simulation of the process of heating of the nozzle blade of a steam turbine in order to reduce the concentration and sizes of droplets that can induce erosion are presented. Results of numerical simulation of the motion of polydisperse flow of moisture accompanied by the formation of a film on the surface of the blade are compared with experimental data. A technique of calculating heating of nozzle blades as an effective method of combatting erosion is developed. Results that show that the efficiency of heating is significantly higher than intrachannel separation are obtained.

Keywords

moist steam heating of nozzle blades erosion of rotor blades last stage of a steam turbine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Young, K. K. Yau, and P. T. Walters, “Fog droplet deposition and coarse water formation in low-pressure steam turbines: a combined experimental and theoretical analysis,” J. Turbomach., 110(2), 163 – 172 (1988).CrossRefGoogle Scholar
  2. 2.
    Qulan Zhoum, Na Li, Xi Chen, Akio Yonezu, Tongmo Xu, Shien Hui, and Di Zhang, “Water drop erosion turbine blades: numerical framework and application,” Mater. Trans., 49(7), 1606 – 1615 (2008).CrossRefGoogle Scholar
  3. 3.
    G. A. Filippov and O. A. Povarov, Separation of Moisture in Turbines of Nuclear Power Plants [in Russian], Énergiya, Moscow (1980).Google Scholar
  4. 4.
    M. Hoznedl, L. Taje, and L. Bednar, “Separation of the liquid phase from the stator blades of the last stage of a steam turbine,” Bauman Centenary Conference BCE-2012-19 (Nov. 10, 2012), Cambridge, England (2012).Google Scholar
  5. 5.
    V. G. Gribin, A. A. Tishchenko, I. Yu. Gavrilov, V. V. Popov, I. Yu. Sorokin, V. A. Tishchenko, and S. V. Khomyakov, “Experimental study of intrachannel separation in a flat nozzle turbine blade assembly with wet stream flow,” Power Technol. Eng., 50(2), 180 – 187 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Ye. Deych, Gaseodynamics of the Cascades of Turbomachines [in Russian], Énergoatomizdat, Moscow (1996).Google Scholar
  7. 7.
    S. Y. Lee and S. U. Ryu, “Recent progress of spray-wall interaction research,” J. Mech. Sci. Technol., 20(8), 1101 – 1117 (2006).CrossRefGoogle Scholar
  8. 8.
    C. Mundo, M. Sommerfeld, and C. Tropea, “Droplet-wall collisions: experimental studies of the deformation and breakup process,” Int. J. Multiphase Flow, 21(1), 151 – 173 (1995).CrossRefGoogle Scholar
  9. 9.
    I. I. Kirillov et al., “Breakup of films of moisture in the exit from the edges of the nozzle blades of steam turbines,” Inzh. Fiz. Zh., XV(1), 85 – 90 (1968).Google Scholar
  10. 10.
    M. A. Friedrich, H. Lan, J. L. Wegener, J. A. Dallmeier, and B. F. Armaly, “A separation criterion with experimental validation for shear-driven films in separated flows,” J. Fluids Eng., 130, 051301-1 – 051301-9 (2008).CrossRefGoogle Scholar
  11. 11.
    G. Fillipov, V. Gribin, A. Tishchenko, I. Gavrilov, and V. Tishchenko, “Experimental studies of polydispersed wet steam flows in a turbine blade cascade,” Proc. IMechE Part A. J. Power and Energy, 228(2), 168 – 177 (2014).CrossRefGoogle Scholar
  12. 12.
    V. G. Gribin, A. A. Tishchenko, V. A. Tishchenko, I. Yu. Gavrilov, I. Yu. Sorokin, and R. A. Alexeev, “Experimental study of the features of the motion of liquid-phase particles in the interblade channel of the nozzle array of a steam turbine,” Power Technol. Eng., 51(1), 82 – 88 (2016).CrossRefGoogle Scholar
  13. 13.
    G. A. Fillipov, V. G. Gribin, A. A. Tishchenko, I. Yu. Gavrilov, V. A. Tishchenko, S. V. Khomiakov, V. V. Popov, and I. Yu. Sorokin, “Steam injection impact on the performance of nozzle grid in wet-vapor stream,” Thermal Eng., 63(4), 233 – 238 (2016).CrossRefGoogle Scholar
  14. 14.
    V. G. Gribin, A. A. Tishchenko, R. A. Alexeev, I. Yu. Gavrilov, S. V. Khomyakov, V. V. Popov, V. A. Tishchenko, and I. Yu. Sorokin, “Performance of a wet-steam turbine stator blade with heating steam injection,” in: Proc. 12th European Conf. Turbomachinery Fluid Dynamics & Thermodynamics ETC12 (April 3 – 7, 2017), Stockholm, Sweden, ETC2017-312.Google Scholar
  15. 15.
    S. V. Khomyakov, R. A. Alexeev, I. Y. Gavrilov, V. G. Gribin, A. A. Tishchenko, V. A. Tishchenko, and V. V. Popov, “Experimental study of the efficiency of steam injection on wet steam turbine (stator blade cascade),” J. Phys. Conf. Ser., 891, 012256 (2017).CrossRefGoogle Scholar
  16. 16.
    I. Yu. Gavrilov, V. V. Popov, I. Yu. Sorokin, V. A. Tishchenko, and S. V. Khomyakov, “Contactless technique for determining the average sizes of erosion-hazardous droplets in polydisperse wet steam flow,” Thermal Eng., 61(8), 577 – 584 (2014).CrossRefGoogle Scholar
  17. 17.
    N. V. Averkina, Yu. Ya. Kachuriner, V. G. Orlik, F. M. Sukharev, and M. A. Filaretov, “Experience gained from industrial use of heating of stationary plates for reducing erosion of moist-steam turbine stages,” Élektr. Stantsii, No. 2, 24 – 28 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. Yu. Gavrilov
    • 1
    Email author
  • V. A. Tishchenko
    • 1
  • V. V. Popov
    • 1
  1. 1.National Research University MEI (Scientific Research Institute, MEI)MoscowRussia

Personalised recommendations