Advertisement

Power Technology and Engineering

, Volume 52, Issue 2, pp 152–161 | Cite as

Seafloor Scour Near Gravity Platforms from the Frontal Impact of Regular Waves and Currents

  • A. V. AlekseevaEmail author
  • N. D. Belyaev
  • V. V. Lebedev
  • I. S. Nudner
  • K. K. Semenov
  • D. I. Shchemelinin
Article
  • 14 Downloads

The results of experimental investigations of seafloor scour near the foundations of gravity platforms under the frontal impact of regular waves and currents are presented. The effect of current velocities on the location of the scour zone relative to the structure is determined.

Keywords

seafloor scour gravity platform regular waves current location of scour undercutting of base 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.-L. Xie, “Scouring patterns in front of vertical breakwater,” Acta Oceanol. Sinica, 4, No. 1, 153 – 164 (1985).Google Scholar
  2. 2.
    S. A. Hughes and J. E. Fowler, “Wave-induced scour prediction at vertical walls,” Proc. of Coastal Sediments ‘91. ASCE, 2, 1886 – 1900 (1991).Google Scholar
  3. 3.
    N. C. Kras and W. G. McDougal, “The efect of seawalls on the beach. Part 1. An updated literature review,” J. Coast. Res. The Coastal Education and Research Foundation, 12(3), 691 – 701 (1996).Google Scholar
  4. 4.
    P. J Rance, “The potential for scour around large objects,” Scour Prevention Techniques Around Offshore Structures, London Seminar, Society for Underwater Technology (1980), pp. 41 – 53.Google Scholar
  5. 5.
    B. M. Sumer and J. Fredsoe, “Scour at the round head of a vertical-wall breakwater,” Coast. Eng., 29(3), 201 – 230 (1997).CrossRefGoogle Scholar
  6. 6.
    J. Fredsoe and B. M. Sumer, “Scour at the roung head of a rubble-mound breakwater, Coast. Eng., 29(3), 231 – 262 (1997).CrossRefGoogle Scholar
  7. 7.
    S. A. Hughes and J. E. Fowler, “Estimating wave-iduced kinematics at sloping structures,” J. Waterway Port Ocean Eng. ASCE, 2, 2258 – 2271 (1995).Google Scholar
  8. 8.
    EM 1110-2-1100. Coastal Engineering Manual Part VI: Design of Coastal Project Elements, U.S. Army Corps of Engineers.Google Scholar
  9. 9.
    V. R. Dushko and V. M. Kushnir, “Problem of scour of bed material near the support base of a submersible drilling rig,” Zb. Nauk. Prats. NUK, No. 3, 30 – 36 (2006).Google Scholar
  10. 10.
    V. R. Dushko and V. M. Kushnir, “Regime of flow around and bed material transport near a support of a jack-up drilling rig, Ecological Safety of near-shore and shelf zones and combined use of shelf resources,” Sb. Nauch. Tr., NAN Ukrainy, Issue 10, 377 – 387, (2005).Google Scholar
  11. 11.
    V. R. Dushko and V. M. Kushnir, “Characteristics of the impact of surface waves and currents on a submersible drilling rig,” Vest. SevGTU, Issue 75, 65 – 73 (2006).Google Scholar
  12. 12.
    M. Kh. Dévis and S. M. Mishchenko, “Experimental investigations of local scour at the base of offshore hydraulic structures,” Izv. VNIIG im. B. E. Vedeneeva, 23, 140 – 151 (2000).Google Scholar
  13. 13.
    I. Sh. Khalfin, Wave Action on Offshore Oil and Gas Field Structures [in Rusian], Nedra, Moscow (1990).Google Scholar
  14. 14.
    V. V. Sharova, “Investigation of scour near the face wall of a protective structure from the action of obliquely approaching waves,” Vest. MGSU, No. 2, 179 – 186 (2014).Google Scholar
  15. 15.
    I. G. Kantarzhi and S. M. Antsyferov, “Moceling suspended sediments under waves on a current,” Okeanologiya, 45(2), 173 – 181 (2005).Google Scholar
  16. 16.
    I. Kantardgi and S. Antsyferov, “On sediment suspension threshold under wave and current co-action,” in: Proc. 7th Int. Conf. MEDCOAST (2005), pp. 1115 – 1126.Google Scholar
  17. 17.
    SP 38.1330.2012. Actualized Edition of SNiP 2.06.04 – 82*. Loads and Actions on Hydraulic Structures (Wave, Ice, and from Ships). Approved by Order of Minregion of Russian on December 29, 2011, No. 635/12 [in Russian].Google Scholar
  18. 18.
    N. D. Belyaev, V. V. Lebedev, I. S. Nudner, K. K. Semenov, and D. I. Shchemelinin, “Selection of measures on scour protection of the bases of gravity platforms for developing the shelf,” Inzh.-Stroit. Zh., No. 3(55), 79 – 88 (2015).Google Scholar
  19. 19.
    D. Babchik, N. Belyaev, V. Lebedev, I Nudner, K. Semenov, and I. Shchemelinin, “Experimental investigations of local scour caused by currents and regular waves near drilling barge foundations with cutout in stern,” in: Proc. 5th Int. Conf.Coastlab 14,” Varna, Bulgaria (2014), pp. 114 – 124.Google Scholar
  20. 20.
    I. G. Shchemelinin, A. V. Utin, N. D. Belyaev, V. V. Lebedev, I. S. Nudner, and K. K. Semenov, “Experimental studies regarding the efficient of sea bed soil protection near offshore structures,” in: Proc. ISOPE, Busan, Korea. Vol. 3. Paper 14TPC-0320 (2014), pp. 625 – 631.Google Scholar
  21. 21.
    A. Shields, “Anwendeung der Ahnlichkeitsmechanic und der Turbulezforschung auf die Geschiewegung,” Mitt. der Preuss. Versuchsanst. fur Wasserbau und Schiffban, Heft 26, Berlin, Deutschland (1936).Google Scholar
  22. 22.
    L. C. Van Rijn, “Sand transport by currents and waves: General approximation formulae,” Proc. Coastal Sediments, 3 (2003).Google Scholar
  23. 23.
    V. S. Knoroz, “Nonscouring velocities for noncohesive soils and factors determining it,” Izv. VNIIG im. B. E. Vedeneeva, 59, 62 – 81 (1958).Google Scholar
  24. 24.
    J. P. Le Roux, “Wave friction factor as related to the Shields parameter for steeady currents,” Sedim. Geol., 155, 37 – 43 (2003).CrossRefGoogle Scholar
  25. 25.
    J. M. Thomsen, Scour in a Marine Environment Characterized by Current and Waves, Aalborg University, Denmark.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Alekseeva
    • 1
    Email author
  • N. D. Belyaev
    • 2
  • V. V. Lebedev
    • 1
  • I. S. Nudner
    • 1
  • K. K. Semenov
    • 1
  • D. I. Shchemelinin
    • 1
  1. 1.23 State Marine Design Institute (23 GMPI)St. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic University (SPbPU)St. PetersburgRussia

Personalised recommendations