Power Technology and Engineering

, Volume 52, Issue 1, pp 62–68 | Cite as

Properties and Pulverized Coal Combustion of Low-Reactivity Fuels. Part I. Fuel Properties and Preparation for Combustion

  • A. N. AlekhnovichEmail author

Low-reactivity properties of anthracite, lean coals, and petroleum coke are determined by a combination of factors, including not only a low heating value of the volatile matter, but also an increase in the volatile yield and ignition temperatures, as well as decrease in reactivity properties of a non-volatile residue. The fuel preparation activities intended to increase the stability of the fuel ignition and burnout include the improvement of heat balance of the air-fuel mixture flow and favorable adjustment of the reactivity properties of the fuel supplied to the furnace.


low-reactivity coal volatile yield pulverized coal combustion volatile matter heating value non-volatile residue reactivity properties air-fuel mixture heat balance hot air temperature reactive fuel addition thermochemical preparation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Alekhnovich, Characteristics and Properties of Power- Generating Coals [in Russian], Tsitsero, Chelyabinsk (2012).Google Scholar
  2. 2.
    F. Woskoboenko, “Explosibility of Victorian brown coal dust,” Fuel, 67(8), 1062 – 1068 (1988).CrossRefGoogle Scholar
  3. 3.
    J. Gillespie, S. Bedi, J. Gibbins, and C. Man, Combustion of low volatile coals in wall fired plant. Phase 1, Mitsui Babcock: Report No. 32/01/031 (2002).Google Scholar
  4. 4.
    E. Kh. Verbovetskii and N. G. Zhmerik, Guidelines on designing furnace devices of power boilers [in Russian], VTITsKTI, St. Petersburg (1996).Google Scholar
  5. 5.
    S. J. Goidich, J. A. Garcia-Mallol, A. H. Seltzer, and D. E.Wagner, Integration of the arch furnace and BENSON vertical OTU technologies for high efficiency low volatile fuel combustion: Presented for Power-Gen Europe Conference-2006 (2006).Google Scholar
  6. 6.
    Thermal Calculation of Boiler Units (standard method). 3rd Edition [in Russian], NPO TsKTI, St. Petersburg (1998).Google Scholar
  7. 7.
    K. Matsumoto, K. Domoto, K. Fujimura, N. Abe, H. Hirahara, and J. Kasai, “Development of ultra-low NOx coal-firing burner: Technical review,” Mitsubishi Heavy Industries, 50(3), September (2013).Google Scholar
  8. 8.
    A. N. Kozlov, D. A. Svishchev, and I. G. Donskoy, “Study of the reaction ability of solid fuels as a function of their structure and properties,” in: Proc. of the 9th All-Russian Conf. “Fuel combustion: theory, experiment, applications,” Novosibirsk, November 16 – 18, 2015 [in Russian]. S1-3.pdf.
  9. 9.
    N. M. Shuvayeva, O. B. Borisenko, and O. A. Borisenko, “Improvement of the efficiency of preparation for flame combustion of low-reactivity coals of Ukraine,” Énerg. Teplotekh. Prots. Oborud., No. 6, 124 – 129 (2005).Google Scholar
  10. 10.
    V. I. Babii and Yu. F. Kuvaev, Coal Dust Combustion and Calculation of Pulverized Coal Flame [in Russian], Énergoatomizdat, Moscow (1986).Google Scholar
  11. 11.
    Ch. Spero, Utilization of Queensland’s low and high volatile coals in power generation, Presented for EU Australia Coal Conference, Germany (September 24 – 25, 2001).Google Scholar
  12. 12.
    A. N. Alekhnovich, Sulfur in Power-Generating Coals and Its Effect on the Thermal Power Plant Operation [in Russian], Tsitsero, Chelyabinsk (2014).Google Scholar
  13. 13.
    A. N. Alekhnovich, “Furnace and burner equipment of pulverized coal-fired boilers,” Bibl. Élektrotekh., No. 11, 167 (2012).Google Scholar
  14. 14.
    A. M. Arkhipov and V. Ya. Putilov, “Step-wise flame combustion of Kuznetsk coals at the thermal power plants,” Teploénergetika, No. 8, 52 – 57 (2009).Google Scholar
  15. 15.
    A. N. Alekhnovich and V. V. Bogomolov, “Use of coal mixtures at the thermal power plants,” Élektr. Stantsii, No. 4, 2 – 8 (2010).Google Scholar
  16. 16.
    I. V. Bestsennyi, D. L. Bondzik, T. S. Shchudlo, and N. I. Dunaevskaya, “A study of the gas coal effect on the flame burnout of its mixture with anthracite,” in: Reports of the 5th Applied Research ConferenceMineral content of fuels, slagging, boiler cleaning, ash capturing and utilization.” Vol. 1 [in Russian], ITsEU, Chelyabinsk (2011), pp. 170 – 175.Google Scholar
  17. 17.
    V. A. Dubrovskii and M. V. Zubova, Energy Saving Firing and Flame Support Systems of the Boiler Furnace Chambers: Monograph [in Russian], Siberian Federal University, Krasnoyarsk (2012).Google Scholar
  18. 18.
    Yu. P. Korchevoy, N. I. Dunaevskaya, Yu. P. Kukota, N. I. Rasyuk, M. M. Nekhamin, and D. L. Bondzik, “A vortex pulverized coal-fired burner for anthracite combustion with preliminary thermochemical preparation,” in: Proc. of the 4th Int. Appl. Res. Conf.Coal thermal power industry: rehabilitation and development aspects” [in Russian], Alushta (2008).Google Scholar
  19. 19.
    Yu. P. Kukota, N. I. Dunaevskaya, M. M. Nekhamin, D. L. Bondzik, K. G. Davidovich, and A. A. Kapustyanskii, “Commercial testing of a thermochemical preparation enabling burner using a TPP 210A boiler at the Tripolskaya thermal power plant,” in: Proc. of the 7th Appl. Res. Conf.Coal thermal power industry: rehabilitation and development aspects” [in Russian], Alushta (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ural Heat Engineering LaboratotyChelyabinsRussia

Personalised recommendations