Advertisement

Impacts of Anthropogenic Land Use/Land Cover on the Distribution of Invasive Aquatic Macrophytes in Tropical Floodplains: a Case Study from the Barak River Basin in Northeast India

  • Nami Prasad
  • Tapati DasEmail author
  • Dibyendu Adhikari
Article
  • 54 Downloads

Introduction

Tropical floodplains are low-lying areas that experience periodic flooding from adjacent rivers and wetlands (Junk and Welcomme 1990). Various aquatic ecosystems such as oxbow lakes, wetlands, ponds, swamps, rivers, and small streams, which are vital components of a floodplain landscape, perform ecosystem services estimated to be worth ~US$ 3920 billion per year (Tockner and Stanford 2002). They also provide a productive environment for economic activities such as agriculture, fisheries, and mining (Junk 1997).

The floodplains in India are home to diverse flora and fauna. They are also the zones of significant economic and socio-cultural activities and hence prone to environmental degradation. A recent study showed that nearly half of the Indian subcontinent is climatically suitable for invasion by diverse alien species (Adhikari et al.2015), substantially comprised of the floodplains of the major rivers: the Ganga, Brahmaputra, Barak, Mahanadi, Brahmani, Baitarani,...

Keywords

Aquatic weeds Tropical floodplains Invasive species Anthropogenic land use/land cover Barak River Northeast India 

Notes

Acknowledgments

Financial support received from the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (SERBGrantNo.SB/EMEQ-424/2014 dated 18.08.2016) is gratefully acknowledged. The first author thanks the University Grant Commission, New Delhi, for financial support in the form of fellowship.

Funding

This study was funded by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India. Grant No. SB/EMEQ-424/2014 dated 18.08.2016.

Compliance with Ethical Standards

Conflict of Interest

Tapati Das has received the research grant from SERB for conducting the research. Nami Prasad was supported by a UGC Non-NET fellowship from the University Grants Commission, New Delhi. Dibyendu Adhikari worked as a Research Scientist in Department of Botany, North-Eastern Hill University, Shillong, and was financially supported by the Department of Biotechnology (DBT), New Delhi. The authors declare that they have no conflict of interest.

Supplementary material

10745_2019_67_MOESM1_ESM.docx (85 kb)
ESM 1 (DOCX 85 kb)

References

  1. Adhikari, D., Tiwary, R., and Barik, S. K. (2015). Modelling hotspots for invasive alien plants in India. PloS One 10(7): e0134665.  https://doi.org/10.1371/journal.pone.0134665.CrossRefGoogle Scholar
  2. Allan, J. D., and Flecker, A. S. (1993). Biodiversity conservation in running waters. BioScience 43: 32–43.  https://doi.org/10.2307/1312104.CrossRefGoogle Scholar
  3. Burcher, C. L., Valett, H. M., and Benfield, E. F. (2007). The land-cover cascade: Relationships coupling land and water. Ecology 88(1)): 228–242. https://doi.org/10.1890/0012-9658(2007)88[228:TLCRCL]2.0.CO;2.CrossRefGoogle Scholar
  4. Carr, G. M., Duthie, H. C., and Taylor, W. D. (1997). Models of aquatic plant productivity: A review of the factors that influence growth. Aquatic Botany 59(3–4): 195–215.  https://doi.org/10.1016/S0304-3770(97)00071-5.CrossRefGoogle Scholar
  5. Chytrý, M., Pyšek, P., Wild, J., Pino, J., Maskell, L. C., and Vilà, M. (2009). European map of alien plant invasions based on the quantitative assessment across habitats. Diversity and Distributions 15(1): 98–107.  https://doi.org/10.1111/j.1472-4642.2008.00515.x.CrossRefGoogle Scholar
  6. Clout, M. N., and Williams, P. A. (2009). Invasive species management: A handbook of principles and techniques (Eds.). Oxford University press.Google Scholar
  7. Dar, P. A., Reshi, Z. A., and Shah, M. A. (2015). Roads act as corridors for the spread of alien plant species in the mountainous regions: A case study of Kashmir Valley, India. Tropical Ecology 56(2): 183–190.Google Scholar
  8. Das, T., and Das, A. K. (2014). Mapping and identification of homegardens as a component of the trees outside forests using remote sensing and geographic information system. Journal of the Indian Society of Remote Sensing 42(1): 233–242.  https://doi.org/10.1007/s12524-013-0310-3.CrossRefGoogle Scholar
  9. Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A., and Ewers, R. M. (2007). Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology & Evolution 22(9): 489–496.  https://doi.org/10.1016/j.tree.2007.07.001.CrossRefGoogle Scholar
  10. D'Odorico, P., Laio, F., Porporato, A., Ridolfi, L., Rinaldo, A., and Rodriguez-Iturbe, I. (2010). Ecohydrology of terrestrial ecosystems. BioScience 60(11): 898–907.  https://doi.org/10.1525/bio.2010.60.11.6.CrossRefGoogle Scholar
  11. Ehrenfeld, J. G. (2010). Ecosystem consequences of biological invasions. Annual Review of Ecology Evolution and Systematics 41: 59–80.  https://doi.org/10.1146/annurev-ecolsys-102209-144650.CrossRefGoogle Scholar
  12. Elith, J., and Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual reviews of ecology, evolution and systematics 40: 677–697.CrossRefGoogle Scholar
  13. Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., and Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1): 43–57.  https://doi.org/10.1111/j.1472-4642.2010.00725.x.CrossRefGoogle Scholar
  14. Fleming, J. P., and Dibble, E. D. (2015). Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746(1): 23–37.  https://doi.org/10.1007/s10750-014-2026-y.CrossRefGoogle Scholar
  15. Gratton, C., and Zanden, M. (2009). Flux of aquatic insect productivity to land: Comparison of lentic and lotic ecosystems. Ecology 90(10): 2689–2699.  https://doi.org/10.1890/08-1546.1.CrossRefGoogle Scholar
  16. Haines-Young, R., and Potschin, M. (2010). The links between biodiversity, ecosystem services and human well-being. Ecosystem Ecology: a new synthesis 1: 110–139.CrossRefGoogle Scholar
  17. Hudon, C., Gagnon, P., and Jean, M. (2005). Hydrological factors controlling the spread of common reed (Phragmites australis) in the St. Lawrence River (Québec, Canada). Ecoscience 12(3): 347–357.  https://doi.org/10.2980/i1195-6860-12-3-347.1.CrossRefGoogle Scholar
  18. Jackson, R. B., Carpenter, S. R., Dahm, C. N., Mcknight, D. M., Naiman, R. J., Postel, S. L., and Running, S. W. (2001). Water in a changing world. Ecological Applications 11: 1027–1045. https://doi.org/10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2.CrossRefGoogle Scholar
  19. Julie, K. C., and Fennessy, M. S. (2001). Wetland plants: Biology and ecology, Lewis Publishers, Boca Raton.Google Scholar
  20. Junk, W. J. (1997). General aspects of floodplain ecology with special reference to Amazonian floodplains. In the Central Amazon floodplain, Springer, Berlin Heidelberg.Google Scholar
  21. Junk, W. J., and Welcomme, R. L. (1990). Floodplains. In: Wetlands and shallow continental water bodies (ed.) B.C. Patten et al., pp. 491–524. The Hague, the Netherlands: SPB academic publishers.Google Scholar
  22. Kelly, A. E., and Goulden, M. L. (2008). Rapid shifts in plant distribution with recent climate change. The Proceedings of the National Academy of Sciences 105(33): 11823–11826.  https://doi.org/10.1073/pnas.0802891105.CrossRefGoogle Scholar
  23. Lambin, E. F., Geist, H. J., and Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28(1): 205–241.  https://doi.org/10.1146/annurev.energy.28.050302.105459.CrossRefGoogle Scholar
  24. Lin, Y. P., Hong, N. M., Wu, P. J., Wu, C. F., and Verburg, P. H. (2007). Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in northern Taiwan. Landscape and Urban Planning 80(1–2): 111–126.  https://doi.org/10.1016/j.landurbplan.2006.06.007.CrossRefGoogle Scholar
  25. Malmqvist, B., and Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation 29: 134–153.  https://doi.org/10.1017/S0376892902000097.CrossRefGoogle Scholar
  26. Merow, C., Smith, M. J., and Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36(10): 1058–1069.  https://doi.org/10.1111/j.1600-0587.2013.07872.x.CrossRefGoogle Scholar
  27. Naiman, R. J., and Turner, M. G. (2000). A future perspective on North America’s freshwater ecosystems. Ecological Applications 10: 958–970. https://doi.org/10.1890/1051-0761(2000)010[0958:AFPONA]2.0.CO;2.CrossRefGoogle Scholar
  28. Naiman, R. J., Magnuson, J. J., Mcknight, D. M., and Stanford, J. A. (1995). The freshwater imperative: A research agenda. In Island press, D.C., U.S.A, Washington.Google Scholar
  29. Naiman, R. J., Bechtold, J. S., Beechie, T. J., Latterell, J. J., and Van Pelt, R. (2010). A process-based view of floodplain forest patterns in coastal river valleys of the Pacific northwest. Ecosystems 13(1): 1–31.  https://doi.org/10.1007/s10021-009-9298-5.CrossRefGoogle Scholar
  30. Nilsson, C., and Svedmark, M. (2002). Basic principles and ecological consequences of changing water regimes: Riparian plant communities. Environmental Management 30(4): 468–480.  https://doi.org/10.1007/s00267-002-2735-2.CrossRefGoogle Scholar
  31. Olson, D. M., and Dinerstein, E. (1998). The global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conservation Biology 12: 502–515.  https://doi.org/10.1046/j.1523-1739.1998.012003502.x.CrossRefGoogle Scholar
  32. ORNL, DAAC. (2008). MODIS collection 5 land products global subsetting and visualization tool. ORNLDAAC, oak ridge, Tennessee, USA. Accessed march 04, 2016. Subset obtained for MOD13Q1 product at 24.8341N, 92.7928E, time period: 2012-01-01 to 2015-12-19, and subset size: 200.25 x 200.25 km. doi:  https://doi.org/10.3334/ORNLDAAC/1241.
  33. Peterson, A. T. (2011). Ecological niches and geographic distributions. Monographs in population biology. No. 49. Princeton University Press.Google Scholar
  34. Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3): 231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026.CrossRefGoogle Scholar
  35. Postel, S., and Richter, B. (2003). Rivers for life: Managing water for people and nature, Island Press, Washington, DC, USA.Google Scholar
  36. Qiao, H., Peterson, A. T., Campbell, L. P., Soberón, J., Ji, L., and Escobar, L. E. (2016). NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 39: 805–813.  https://doi.org/10.1111/ecog.01961.CrossRefGoogle Scholar
  37. Rahel, F. J. (2002). Homogenization of freshwater faunas. Annual Review of Ecology, Evolution and Systematics 33: 291–315.  https://doi.org/10.1146/annurev.ecolsys.33.010802.150429.CrossRefGoogle Scholar
  38. Rajbongshi, P., Das, T., and Adhikari, D. (2018). Microenvironmental heterogeneity caused by anthropogenic LULC foster lower plant assemblages in the riparian habitats of lentic systems in tropical floodplains. Science of the Total Environment 639: 1254–1260  https://doi.org/10.1016/j.scitotenv.2018.05.249.CrossRefGoogle Scholar
  39. Reang, D., De, A., and Das, A. K. (2018). Water resources of Barak Valley, India: Spatial assessment of lentic and lotic system using remote sensing and GIS at 5.8 m resolution. International Journal of Advanced Remote Sensing and GIS 7(1): 2633–2642.  https://doi.org/10.23953/cloud.ijarsg.358.CrossRefGoogle Scholar
  40. Revenga, C., Campbell, I., Abell, R., Devilliers, P., and Bryer, M. (2005). Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of the Royal Society B 360: 397–413.  https://doi.org/10.1098/rstb.2004.1595.CrossRefGoogle Scholar
  41. Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. D., and West, C. J. (2000). Naturalization and invasion of alien plants: Concepts and definitions. Diversity and Distributions 6(2): 93–107.  https://doi.org/10.1046/j.1472-4642.2000.00083.x.CrossRefGoogle Scholar
  42. Roy, P. S., Roy, A., Joshi, P. K., Kale, M. P., Srivastava, V. K., Srivastava, S. K., et al (2015). Development of decadal (1985–1995–2005) land use and land cover database for India. Remote Sensing 7(3): 2401–2430.  https://doi.org/10.3390/rs70302401.CrossRefGoogle Scholar
  43. Sax, D. F., Stachowicz, J. J., Brown, J. H., Bruno, J. F., Dawson, M. N., Gaines, S. D., Grosberg, R. K., Hastings, A., Holt, R. D., Mayfield, M. M., O'Connor, M. I., and Rice, W. R. (2007). Ecological and evolutionary insights from species invasions. Trends in Ecology & Evolution 22(9): 465–471.  https://doi.org/10.1016/j.tree.2007.06.009.CrossRefGoogle Scholar
  44. Schultz, R., and Dibble, E. (2012). Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: The role of invasive plant traits. Hydrobiologia 684(1): 1–14.  https://doi.org/10.1007/s10750-011-0978-8.CrossRefGoogle Scholar
  45. Soberón, J., and Nakamura, M. (2009). Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences 106(supplement 2): 19644-19650. doi:  https://doi.org/10.1073/pnas.0901637106 .
  46. Sujana, K. A., Saravanan, R., and Pandey, A. D. (2015). Distribution of aquatic Macrophytes in Balasore District, Odisha. In Rawat, M., Dookia, S., and Sivaperuman, C. (eds.), Aquatic ecosystem: Biodiversity, Ecology and Conservation, Springer, New Delhi, pp. 1–12.Google Scholar
  47. Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., and Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences USA 102(23): 8245–8250.  https://doi.org/10.1073/pnas.0409902102.CrossRefGoogle Scholar
  48. Thuiller, W., Broennimann, O., Hughes, G., Alkemade, J. R. M., Midgley, G. F., and Corsi, F. (2006). Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology 12(3): 424–440.  https://doi.org/10.1111/j.1365-2486.2006.01115.x.CrossRefGoogle Scholar
  49. Tockner, K., and Stanford, J. A. (2002). Riverine flood plains: Present state and future trends. Environmental Conservation 29(03): 308–330.  https://doi.org/10.1017/S037689290200022X.CrossRefGoogle Scholar
  50. Trombulak, S. C., and Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology 14(1): 18–30.  https://doi.org/10.1046/j.1523-1739.2000.99084.x.CrossRefGoogle Scholar
  51. Walther, G. R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Ingolf, K., Martin, Z., Sven, B., Zoltán, B. D., Harald, K. M. B., Bálint, C. J. D., Thomas, H., Vojtěch, J., Marc, K., Stefan, K., Dan, M., Mari, M., Wolfgang, N., Jürgen, O., Vadim, E. P., Björn, R., Christelle, R., Vitaliy, P. S., Wojciech, S., Wilfried, T., Montserrat, V., Katrin, V., and Josef, S. (2009). Alien species in a warmer world: Risks and opportunities. Trends in Ecology & Evolution 24(12): 686–693.  https://doi.org/10.1016/j.tree.2009.06.008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ecology and Environmental ScienceAssam UniversitySilcharIndia
  2. 2.Department of BotanyNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations