Understanding Agriculture within the Frameworks of Cumulative Cultural Evolution, Gene-Culture Co-Evolution, and Cultural Niche Construction

  • Arie AltmanEmail author
  • Alex Mesoudi


Since its emergence around 12,000 years ago, agriculture has transformed our species, other species, and the planet on which we all live. Here we argue that the emergence and impact of agriculture can be understood within new theoretical frameworks developing within the evolutionary human sciences. First, the improvement and diversification of agricultural knowledge, practices, and technology is a case of cumulative cultural evolution, with successive modifications accumulated over multiple generations to exceed what any single person could create alone. We discuss how the factors that permit, facilitate, and hinder cumulative cultural evolution might apply to agriculture. Second, agriculture is a prime example of gene-culture co-evolution, where culturally transmitted agricultural practices generate novel selection pressures for genetic evolution. While this point has traditionally been made for the human genome, we expand the concept to include genetic changes in domesticated plants and animals, both via traditional breeding and molecular breeding. Third, agriculture is a powerful niche-constructing activity that has extensively transformed the abiotic, biotic, and social environments. We examine how agricultural knowledge and practice shapes, and are shaped by, social norms and attitudes. We discuss recent biotechnology and associated molecular breeding techniques and present several case studies, including golden rice and stress resistance. Overall, we propose new insights into the co-evolution of human culture and plant genes and the unprecedented contribution of agricultural activities to the construction of unique agriculture-driven anthropogenic biomes.


Agriculture Cultural evolution Gene-culture co-evolution Niche construction GM plants Anthropocene 



We are grateful to Kevin Laland (St. Andrews University) for valuable comments on a previous version of the manuscript, John Odling-Smee (Oxford University) for fruitful discussions, and Stephen Shennan for hosting AA as an Honorary Senior Research Associate at UCL during the writing of this paper. AA acknowledge the fruitful discussions with Itamar Even-Zohar (Culture Research, Tel Aviv University). AM acknowledges the Mortimer and Raymond Sackler Institute for Advanced Studies at Tel-Aviv University and Itamar Even-Zohar for hosting him as a Fellow, during which time this paper was conceived.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have of no conflict of interest.


  1. Abbo, S., Lev-Yadun, S., and Gopher, A. (2014). The ‘Human Mind’ as a Common Denominator in Plant Domestication. Journal of Experimental Botany 65(8): 1917–1920. Scholar
  2. Agarwal, B. (1984). Rural Women and High Yielding Variety Rice Technology. Economical and Political Weekly 19: A.39–A.52.Google Scholar
  3. Alesina, A., Giuliano, P., and Nunn, N. (2013). On the Origins of Gender Roles: Women and the Plough. The Quarterly Journal of Economics 128(2): 469–530. Scholar
  4. Altman, A., and Hasegawa, P. M. (eds.) (2012a). Plant Biotechnology and Agriculture: Prospects for the 21st Century, Elsevier/Academic Press, London.Google Scholar
  5. Altman, A., and Hasegawa, P. M. (2012b). Introduction to Plant Biotechnology: Basic Aspects and Agricultural Implications. In Altman, A., and Hasegawa, P. M. (eds.), Plant Biotechnology and Agriculture: Prospects for the 21st Century, Elsevier/Academic Press, London.Google Scholar
  6. Atran, S. (1998). Folk Biology and the Anthropology of Science. Behavioral and Brain Sciences 21(4): 547–609.CrossRefGoogle Scholar
  7. Baltes, N. J., and Voytas, D. F. (2015). Enabling Plant Synthetic Biology Through Genome Engineering. Trends in Biotechnology 33: 120–131.CrossRefGoogle Scholar
  8. Barkow, J. H. (2005). Missing the Revolution: Darwinism for Social Scientists, Oxford University Press, Oxford.Google Scholar
  9. Bavister, B. D. (2002). Early History of in vitro Fertilization. Reproduction 124: 181–196.CrossRefGoogle Scholar
  10. Beja-Pereira, A., Luikart, G., England, P. R., Bradley, D. G., Jann, O. C., Bertorelle, G., and Ferrand, N. (2003). Gene-Culture Coevolution between Cattle Milk Protein Genes and Human Lactase Genes. Nature Genetics 35(4): 311–313.CrossRefGoogle Scholar
  11. Ben-Ari, G., and Lavi, U. (2012). Marker-Assisted Selection in Plant Breeding. In Altman, A., and Hasegawa, P. M. (eds.), Plant Biotechnology and Agriculture: Prospects for the 21st Century, Elsevier/Academic Press, London.Google Scholar
  12. Bennett, R., Buthelezi, T. J., Ismael, Y., and Morse, S. (2003). Bt Cotton, Pesticides, Labour and Health: A Case Study of Smallholder Farmers in the Makhathini Flats, Republic of South Africa. Outlook on Agriculture 32: 123–128.CrossRefGoogle Scholar
  13. Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A., Larson, G., Erlandson, J. M., and Petraglia, M. D. (2016). Ecological Consequences of Human Niche Construction: Examining Long-Term Anthropogenic Shaping of Global Species Distributions. Proceedings of the National Academy of Sciences 113(23): 6388–6396.CrossRefGoogle Scholar
  14. Bonny, S. (2016). Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact. Environmental Management 57(1): 31–48.CrossRefGoogle Scholar
  15. Bortesi, L., and Fischer, R. (2015). The CRISPR/Cas9 System for Plant Genome Editing and Beyond. Biotechnology Advances 33: 41–52.CrossRefGoogle Scholar
  16. Boyd, R., and Richerson, P. J. (1985). Culture and the Evolutionary Process, Univ. Chicago Press, Chicago.Google Scholar
  17. Burkhardt, P. K., Beyer, P., WQnn, J., Klbti, A., Armstrong, G. A., Schledz, M., von Lintig, J., and Potrykus, I. (1997). Transgenic Rice (Oryza sativa) Endosperm Expressing Daffodil (Narcissus pseudonarcissus) phytoene Synthase Accumulates Phytoene, a Key Intermediate of Provitamin: A Biosynthesis. The Plant Journal 11: 1071–1078.CrossRefGoogle Scholar
  18. Camp, C. R. (1998). Subsurface Drip Irrigation: A Review. Transactions of the American Society of Agricultural Engineers (ASAE) 41(5): 1353–1367.CrossRefGoogle Scholar
  19. Carlson, E. A. (2004). Mendel's Legacy: The Origin of Classical Genetics, Cold Spring Harbor Press.Google Scholar
  20. Carpenter, J. E. (2013). The Socio-Economic Impacts of Currently Commercialised Genetically Engineered Crops. International Journal of Biometeorology, 12, 249–268.Google Scholar
  21. Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y.-H., Bertain, S., Cho, H.-J., Duck, N., Wong, J., Liu, D., and Lassner, M. W. (2004). Discovery and Directed Evolution of a Glyphosate Tolerance Gene. Science 304(5674): 1151–1154.CrossRefGoogle Scholar
  22. Cavalli-Sforza, L. L., and Feldman, M. W. (1973). Cultural Versus Biological Inheritance: Phenotypic Transmission from Parents to Children. American Journal of Human Genetics 25(6): 618.Google Scholar
  23. Cavalli-Sforza, L. L., and Feldman, M. W. (1981). Cultural Transmission and Evolution, Princeton Univ. Press, Princeton.Google Scholar
  24. Ceasar, S. A., and Ignacimuthu, S. (2012). Genetic Engineering of Crop Plants for Fungal Resistance: Role of Antifungal Genes. Biotechnology Letters 34(6): 995–1002.CrossRefGoogle Scholar
  25. Christensen, S., Sogaard, H. T., Kudsk, P., Norremark, M., Lund, I., Nadimi, E. S., and Jorgensen, R. (2009). Site-Specific Weed Control Technologies. Weed Research 49(3): 233–241.CrossRefGoogle Scholar
  26. Cochrane, E. E., and Gardner, A. (2011). Evolutionary and Interpretive Archaeologies: A dialogue, Left Coast Press.Google Scholar
  27. Corcos, H., and Monaghan, F. V. (1990). Mendel's Work and its Rediscovery: A new Perspective. Critical Review Plant Science 9(3): 197–212.CrossRefGoogle Scholar
  28. D’Andrade, R. (2000). The Sad Story of Anthropology 1950-1999. Cross-Cultural Research 34(3): 219–232. Scholar
  29. Darwin, C. (1859). The origin of species, Penguin, London, p. 1968.Google Scholar
  30. Davison, J. (2010). GM Plants: Science, Politics and EC Regulations. Plant Science 178: 94–98.CrossRefGoogle Scholar
  31. De Framond, A. J., Barton, K. A., and Chilton, M.-D. (1983). MINI-Ti: A New Vector Strategy for Plant Genetic Engineering. Bio/Technology 1: 262–269.Google Scholar
  32. de Maagd, R. A., Bosch, D., and Stiekema, W. (1999). Bacillus Thuringiensis Toxin-Mediated Insect Resistance in Plants. Trends in Plant Science 4(1): 9–13.CrossRefGoogle Scholar
  33. Dean, L. G., Vale, G. L., Laland, K. N., Flynn, E., and Kendal, R. L. (2014). Human Cumulative Culture: a Comparative Perspective. Biological Reviews 89(2): 284–301.CrossRefGoogle Scholar
  34. Derex, M., and Boyd, R. (2016). Partial Connectivity Increases Cultural Accumulation within Groups. Proceedings of the National Academy of Sciences 113(11): 2982–2987. Scholar
  35. Diamond, J. (1997). Guns, germs, and steel: The fates of human societies, Norton and co., New York.Google Scholar
  36. Echols, M. A. (1998). Food safety Regulation in the European Union and the United States: Different Cultures, Different Laws. Columbia Journal of European Law 4: 525–543.Google Scholar
  37. Ellis, E. C. (2015). Ecology in an Anthropogenic Biosphere. Ecological Monographs 85(3): 287–331. Scholar
  38. Ellis, E. C., Magliocca, N. R., Stevens, C. J., and Fuller, D. Q. (2018). Evolving the Anthropocene: Linking Multi-Level Selection with Long-Term Social-Ecological Change. Sustainability Science 13: 119–128.CrossRefGoogle Scholar
  39. Enquist, M., Ghirlanda, S., Jarrick, A., and Wachtmeister, C. A. (2008). Why Does Human Culture Increase Exponentially? Theoretical Population Biology 74(1): 46–55.CrossRefGoogle Scholar
  40. Enquist, M., Ghirlanda, S., and Eriksson, K. (2011). Modelling the Evolution and Diversity of Cumulative Culture. Philosophical Transactions of the Royal Society B 366: 412–423.CrossRefGoogle Scholar
  41. Eriksson, K., and Coultas, J. C. (2014). Corpses, Maggots, Poodles and Rats: Emotional Selection Operating in Three Phases of Cultural Transmission of Urban Legends. Journal of Cognition and Culture 14(1–2): 1–26. Scholar
  42. Erisman, J. W. M., Sutton, A., Galloway, J., Klimont, Z., and Winiwarter, W. (2008). How a Century of Ammonia Synthesis Changed the World. Nature Geoscience 1: 636–639.CrossRefGoogle Scholar
  43. Farmer, B. H. (1986). Perspectives on the ‘Green Revolution’ in South Asia. Modern Asian Studies 20(1): 175–199.CrossRefGoogle Scholar
  44. Farre, G., Ramessar, K., Twyman, R. M., Capell, T., and Christou, P. (2010). The Humanitarian Impact of Plant Biotechnology: Recent Breakthroughs vs Bottlenecks for Adoption. Current Opinion in Plant Biology 13: 219–225.CrossRefGoogle Scholar
  45. Feldman, M. W., and Laland, K. N. (1996). Gene-Culture Coevolutionary Theory. Trends in Ecology and Evolution 11(11): 453–457.CrossRefGoogle Scholar
  46. Fessler, D., and Navarrete, C. (2003). Meat is Good to Taboo: Dietary Proscriptions as a Product of the Interaction of Psychological Mechanisms and Social Processes. Journal of Cognition and Culture 3(1): 1–40.CrossRefGoogle Scholar
  47. Fuller, D. K., Willcox, G., and Allaby, R. G. (2012). Early Agricultural Pathways: Moving Outside the ‘Core Area’ Hypothesis. Journal of Experimental Botany 63: 617–633.CrossRefGoogle Scholar
  48. Fuller, D. Q., Denham, T., Arroyo-Kalin, M., Lucas, L., Stevens, C. J., Qin, L., and Purugganan, M. D. (2014). Convergent Evolution and Parallelism in Plant Domestication Revealed by an Expanding Archaeological Record. Proceedings of the National Academy of Sciences 111(17): 6147–6152. Scholar
  49. Gaskell, G., Bauer, M., Durant, J., and Allum, N. (1999). Worlds Apart? The Reception of Genetically Modified Foods in Europe and the U.S. Science 285(5426): 384–387.CrossRefGoogle Scholar
  50. Gasser, C. S., and Fraley, R. T. (1989). Genetically Engineering Plants for Crop Improvement. Science 244(4910): 1293–1299.CrossRefGoogle Scholar
  51. Gatehouse, J. A. (2008). Biotechnological Prospects for Engineering Insect-Resistant Plants. Plant Physiology 146: 881–887.CrossRefGoogle Scholar
  52. Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., and Thomas, M. G. (2011). Evolution of Lactase Persistence: An example of Human Niche Construction. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1566): 863–877.CrossRefGoogle Scholar
  53. Gray, R. D., and Watts, J. (2017). Macro Matters: Cultural Macroevolution and the Prospects for an Evolutionary Science of Human History. Proceedings of the National Academy of Sciences 114(30): 7846–7852.CrossRefGoogle Scholar
  54. Gremillion, K. J., Barton, L., and Piperno, D. R. (2014). Particularism and the Retreat from Theory in the Archaeology of Agricultural Origins. Proceedings of the National Academy of Sciences 111(17): 6171–6177. Scholar
  55. Gressel, J. (2009a). Molecular Biology of Weed Control. Transgenic Research 9(4–5): 355–382.Google Scholar
  56. Gressel, J. (2009b). Biotech and Gender Issues in the Developing World. Nature Biotechnology 27: 1085–1086.CrossRefGoogle Scholar
  57. Griepentrog, H. W., and Dedousis, A. P. (2009). Mechanical weed control. Soil Engineering: 171–179.Google Scholar
  58. Griffiths, T. L., Kalish, M. L., and Lewandowsky, S. (2008). Theoretical and Empirical Evidence for the Impact of Inductive Biases on Cultural Evolution. Philosophical Transactions of the Royal Society of London B: Biological Sciences 363(1509): 3503–3514.CrossRefGoogle Scholar
  59. Gurr, S. J., and Rushton, P. J. (2005). Engineering Plants with Increased Disease Resistance: What are We Going to Express? Cell 23(6): 275–282.Google Scholar
  60. Hallauer, A.R. 2011. Evolution of plant breeding. Crop Breed. Appl. Biotechnol 11(3): 197–206.Google Scholar
  61. Hasler, J. F. (2003). The Current Status and Future of Commercial Embryo Transfer in Cattle. Animal Reproduction Science 79: 245–264.CrossRefGoogle Scholar
  62. Harfouche, A. L., Jacobson, D. A., Kainer, D., Romero, J. C., Harfouche, A. H., Scarascia Mugnozza, G., Moshelion, M., Tuskan, G. A., Keurentjes, J. J. B., Altman, A., (2019) Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence. Trends in BiotechnologyGoogle Scholar
  63. Henrich, J. (2004). Demography and cultural evolution. American Antiquity 69(2): 197–214.CrossRefGoogle Scholar
  64. Heslop-Harrison, J.S. and Scwarzacher, T. (2012). Genetics and genomics of crop domestication. In: A. Altman and P.M. Hasegawa eds., Plant Biotechnology and Agriculture: Prospects for the 21st Century. London: Elsevier/Academic Press. ISBN-10: 0123814669. pp. 3-18.Google Scholar
  65. Hirayama, T., and Shinozaki, K. (2010). Research on Plant Abiotic Stress Responses in the Post-Genome Era: Past, Present and Future. The Plant Journal 61: 1041–1052.CrossRefGoogle Scholar
  66. IRRA (2018) Golden Rice meets food safety standards in three global leading regulatory agencies. Available at (accessed 2 May 2019).
  67. ISAAA (2017). Global Status of Commercialized Biotech/GM Crops in 2017: Biotech crop Adoption Surges as Economic Benefits Accumulate in 22 Years. ISAAA Brief No. 53. ISAAA: Ithaca, NY.Google Scholar
  68. Itan, Y., Powell, A., Beaumont, M. A., Burger, J., and Thomas, M. G. (2009). The Origins of Lactase Persistence in Europe. PLoS Computational Biology 5(8): e1000491.CrossRefGoogle Scholar
  69. Kendal, J., Tehrani, J. J., and Odling-Smee, J. (2011). Human Niche Construction in Interdisciplinary Focus. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1566): 785–792.CrossRefGoogle Scholar
  70. Khayat, E. (2012). An engineering view to micropropagation and generation of true to type and pathogen-free plants. In: A. Altman and P.M. Hasegawa eds., Plant Biotechnology and Agriculture: Prospects for the 21st Century. London: Elsevier/Academic Press. ISBN-10: 0123814669. Pp. 229-241.Google Scholar
  71. Kluyver, T. A., Jones, G., Pujol, B., Bennett, C., Mockford, E. J., Charles, M., et al (2017). Unconscious Selection Drove Seed Enlargement in Vegetable Crops. Evolution Letters 1(2): 64–72. Scholar
  72. Kolady, D. E., and Lesser, W. (2012). Genetically-Engineered Crops and their Effects on Varietal Diversity: A case of Bt Eggplant in India. Agriculture and Human Values 29: 3–15.CrossRefGoogle Scholar
  73. Kolodny, O., Creanza, N., and Feldman, M. W. (2015). Evolution in Leaps: The Punctuated Accumulation and Loss of Cultural Innovations. Proceedings of the National Academy of Sciences 112(49): E6762–E6769. Scholar
  74. Koornneef, M., and Stam, P. (2001). Changing Paradigms in Plant Breeding. Plant Physiology 125: 156–159.CrossRefGoogle Scholar
  75. Laland, K. N. (2004). Social Learning Strategies. Learning and Behavior 32(1): 4–14. Scholar
  76. Laland, K. N., Odling Smee, J., and Feldman, M. W. (2000). Niche Construction, Biological Evolution, and Cultural Change. Behavioral and Brain Sciences 23(1): 131–175.CrossRefGoogle Scholar
  77. Laland, K. N., Odling-Smee, J., and Myles, S. (2010). How Culture Shaped the Human Genome: Bringing Genetics and the Human Sciences Together. Nature Reviews Genetics 11(2): 137–148.CrossRefGoogle Scholar
  78. Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., and Uller, T. (2011). Cause and Effect in Biology Revisited: Is Mayr’s Proximate-Ultimate Dichotomy Still Useful? Science 334(6062): 1512–1516.CrossRefGoogle Scholar
  79. Larson, G., and Fuller, D. Q. (2014). The Evolution of Animal Domestication. Annual Review of Ecology, Evolution, and Systematics 45(1): 115–136. Scholar
  80. Larson, G., Piperno, D. R., Allaby, R. G., Purugganan, M. D., Andersson, L., Arroyo-Kalin, M., et al (2014). Current Perspectives and the Future of Domestication Studies. Proceedings of the National Academy of Sciences 111(17): 6139–6146. Scholar
  81. Levine, R. S., and Doull, J. (1992). Global Estimates of Acute Pesticide Morbidity and Mortality. Reviews of Environmental Contamination and Toxicology 129: 29–50.Google Scholar
  82. Lewis, H. M., and Laland, K. N. (2012). Transmission Fidelity is the Key to the Build-Up of Cumulative Culture. Philosophical Transactions of the Royal Society B 367: 2171–2180.CrossRefGoogle Scholar
  83. Lewis, S. L., and Maslin, M. A. (2015). Defining the Anthropocene. Nature 519(7542): 171–180. Scholar
  84. Loberant, B. and A. Altman. (2010). Micropropagation of Plants. In: M. C. Flickinger, ed., Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, John WileyGoogle Scholar
  85. Lombardo, L., Copola, J., and Zelasco, S. (2016). New Technologies for Insect-Resistant and Herbicide-Tolerant Plants. Trends in Biotechnology 34(1): 49–57.CrossRefGoogle Scholar
  86. Matson, P. A., Parton, W. J., Power, A. G., and Swift, M. J. (1997). Agricultural Intensification and Ecosystem Properties. Science 277(5325): 504–509.CrossRefGoogle Scholar
  87. Medakker, A. and V. Vijayaraghavan. (2007). Successful Commercialization of Insect-Resistant Eggplant by a Public–Private Partnership: Reaching and Benefiting Resource-Poor Farmers. In A. Krattiger, R.T. Mahoney, L. Nelsen et al. eds. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices. Oxford, U.K., and PIPRA: Davis, U.S.A. (online:
  88. Melander, B., Rasmusen, I. A., and Barberi, P. (2005). Integrating Physical and Cultural Methods of Weed Control— Examples from European research. Weed Science 53(3): 369–381.CrossRefGoogle Scholar
  89. Mendel, G. (1866). Versuche über Plflanzen-hybriden. Verhandlungen des naturforschenden Ver-eines in Brünn, Bd. IV für das Jahr 1865, Abhand-lungen, 3–47. English version: Experiments in plant hybridization (1865). Electronic Scholary Publishing Project 1996
  90. Mesoudi, A. (2008). Foresight in Cultural Evolution. Biology and Philosophy 23(2): 243–255.CrossRefGoogle Scholar
  91. Mesoudi, A. (2011a). Cultural Evolution, Univ. Chicago Press, Chicago.CrossRefGoogle Scholar
  92. Mesoudi, A. (2011b). Variable Cultural Acquisition Costs Constrain Cumulative Cultural Evolution. PLOS One 6(3): e18239.CrossRefGoogle Scholar
  93. Mesoudi, A. (2017). Pursuing Darwin’s Curious Parallel: Prospects for a Science of Cultural Evolution. Proceedings of the National Academy of Sciences 114(30): 7853–7860. Scholar
  94. Mesoudi, A., and Danielson, P. (2008). Ethics, Evolution and Culture. Theory in Biosciences 127(3): 229–240.CrossRefGoogle Scholar
  95. Mesoudi, A., and Thornton, A. (2018). What is Cumulative Cultural Evolution? Proceedings of the Royal Society B 285(1880): 20180712. Scholar
  96. Mesoudi, A., Whiten, A., and Laland, K. N. (2006). Towards a Unified Science of Cultural Evolution. Behavioral and Brain Sciences 29(4): 329–383.CrossRefGoogle Scholar
  97. Mesoudi, A., Blanchet, S., Charmantier, A., Danchin, E., Fogarty, L., Jablonka, E., and Odling-Smee, F. J. (2013). Is non-Genetic Inheritance just a Proximate Mechanism? A Corroboration of the Extended Evolutionary Synthesis. Biological Theory 7(3): 189–195.CrossRefGoogle Scholar
  98. Mesoudi, A., Chang, L., Dall, S. R. X., and Thornton, A. (2016). The Evolution of Individual and Cultural Variation in Social Learning. Trends in Ecology and Evolution 31(3): 215–225. Scholar
  99. Miu, E., Gulley, N., Laland, K. N., and Rendell, L. (2018). Innovation and Cumulative Culture Through Tweaks and Leaps in Online Programming Contests. Nature Communications 9(1): 2321. Scholar
  100. Moshelion, M., and Altman, A. (2015). Current Challenges and Future Perspectives of Plant and Agricultural Biotechnology. Trends in Biotechnology 33: 1–6.CrossRefGoogle Scholar
  101. Mulla, D. J. (2013). Twenty-Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps. Biosystems Engineering 114(4): 358–371.CrossRefGoogle Scholar
  102. Newton, I. (1988). Determination of Critical Pollutant Levels in Wild Populations, Examples from Organochlorine Insecticides in Birds of Prey. Environmental Pollution 55(1): 29–40.CrossRefGoogle Scholar
  103. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., and Hens, L. (2016). Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health 4: 1–8.CrossRefGoogle Scholar
  104. Nummer, B. A. (2002). Historical Origins of Food Preservation. National Center for Home Food Preservation. University of Illinois Extension.Google Scholar
  105. O’Brien, M. J., and Laland, K. N. (2012). Genes, Culture, and Agriculture: An Example of Human Niche Construction. Current Anthropology 53(4): 434–470. Scholar
  106. Odling Smee, F. J., Laland, K. N., and Feldman, M. (2003). Niche Construction, Princeton University Press, Princeton.Google Scholar
  107. Panter-Brick, C., Layton, R. H., and Rowley-Conwy, P. (2001). Hunter-Gatherers: An Interdisciplinary Perspective, Cambridge University Press.Google Scholar
  108. Peng, Y., Shi, H., Qi, X., Xiao, C., Zhong, H., Ma, R. Z., and Su, B. (2010). The ADH 1 B Arg 47 His Polymorphism in East Asian Populations and Expansion of rice Domestication in History. BMC Evolutionary Biology 10(1): 15.CrossRefGoogle Scholar
  109. Pimentel, D. (1995). Amounts of Pesticides Reaching Target Pests: Environmental Impacts and Ethics. Journal of Agricultural and Environmental Ethics 8(1): 17–29.CrossRefGoogle Scholar
  110. Potrykus, I. (2001). Golden rice and Beyond. Plant Physiology 125: 1157–1161.CrossRefGoogle Scholar
  111. Potrykus, I. (2010). Lessons from the ‘Humanitarian Golden Rice’ Project: Regulation Prevents Development of Public Good Genetically Engineered Crop Products. New Biotechnology 27: 466–472.CrossRefGoogle Scholar
  112. Potrykus, I., and Ammann, K. (2010). Transgenic Plants for Food Security in the Context of Development. Proceedings of a Study Week of the Pontifical Academy of Sciences. New Biotechnology 27: 445–718.CrossRefGoogle Scholar
  113. Powell, A., Shennan, S. J., and Thomas, M. G. (2009). Late Pleistocene Demography and the Appearance of Modern Human Behavior. Science 324(5932): 1298–1301.CrossRefGoogle Scholar
  114. Richerson, P. J., Boyd, R., and Henrich, J. (2010). Gene-Culture Coevolution in the Age of Genomics. Proceedings of the National Academy of Sciences 107(Supplement 2): 8985–8992. Scholar
  115. Rowley-Conwy, P., and Layton, R. (2011). Foraging and Farming as Niche Construction: Stable and Unstable Adaptations. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1566): 849–862.CrossRefGoogle Scholar
  116. Sander, J. D., and Joung, J. K. (2014). CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes. Nature Biotechnology 32: 347–355.CrossRefGoogle Scholar
  117. Scholthof, K.-B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., and Foster, G. D. (2011). Top 10 Plant Viruses in Molecular Plant Pathology. Molecular Plant Pathology 12(9): 938–954.CrossRefGoogle Scholar
  118. Schultz, T. R., and Brady, S. G. (2008). Major Evolutionary Transitions in Ant Agriculture. Proceedings of the National Academy of Sciences 105(14): 5435–5440. Scholar
  119. Schuppli, C. A., and Weary, D. M. (2010). Attitudes Towards the Use of Genetically Modified Animals in Research. Public Understanding of Science 19(6): 686–697. Scholar
  120. Simonton, D. K. (1995). Foresight in Insight? A Darwinian Answer. In Sternberg, R. J. (ed.), The nature of Insight, MIT Press, Cambridge, pp. 465–494.Google Scholar
  121. Slingerland, E., and Collard, M. (2011). Creating Consilience: Integrating the Sciences and the Humanities, Oxford University Press.Google Scholar
  122. Smith, B. D. (2011). General Patterns of Niche Construction and the Management of ‘Wild’plant and Animal Resources by Small-Scale Pre-Industrial Societies. Philosophical Transactions of the Royal Society of London B: Biological Sciences 366(1566): 836–848.CrossRefGoogle Scholar
  123. Smith, C., and Simpson, S. P. (1986). The use of Genetic Polymorphisms in Livestock Improvement. Journal of Animal Breeding and Genetics 103: 205–217.CrossRefGoogle Scholar
  124. Srikantia, S. G. (1975). Human Vitamin A Deficiency. World Review of Nutrition and Dietetics 20: 184–230.CrossRefGoogle Scholar
  125. Stone, G. D., and Glover, D. (2017). Disembedding Grain: Golden Rice, the Green Revolution, and Heirloom Seeds in the Philippines. Agriculture and Human Values 34(1): 87–102. Scholar
  126. Subramanian, A., and Qaim, M. (2010). The Impact of Bt Cotton on Poor Households in Rural India. Journal of Development Studies 46: 295–311.CrossRefGoogle Scholar
  127. Subramanian, A., Kirwan, K., Pink, D., and Qaim, M. (2010). GM Crops and Gender Issues. Nature Biotechnology 28: 404–406.CrossRefGoogle Scholar
  128. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., and Mittler, R. (2014). Abiotic and Biotic Stress Combinations. New Phytologist 203(1): 32–43.CrossRefGoogle Scholar
  129. Talhelm, T., Zhang, X., Oishi, S., Shimin, C., Duan, D., Lan, X., and Kitayama, S. (2014). Large-Scale Psychological Differences within China Explained by Rice Versus Wheat Agriculture. Science 344(6184): 603–608. Scholar
  130. Tennie, C., Call, J., and Tomasello, M. (2009). Ratcheting up the Ratchet: On the Evolution of Cumulative Culture. Philosophical Transactions of the Royal Society B 364(1528): 2405–2415.CrossRefGoogle Scholar
  131. Tepfer, D. (1984). Transformation of Several Species of Higher Plants by Agrobaeterium Rhizogenes. Sexual Transmission of the Transformed Genotype and Phenotype. Cell 37: 959–967.CrossRefGoogle Scholar
  132. van der Mark, M., Brouwer, M., Kromhout, H., Nijssen, P., Huss, A., and Vermeulen, R. (2012). Is pesticide use Related to Parkinson Disease? Some Clues to Heterogeneity in Study Results. Environmental Health Perspectives 120(3): 340–347.CrossRefGoogle Scholar
  133. Vidavsky, F., and Czosnek, H. (1998). Tomato Breeding Lines Resistant and Tolerant to Tomato Yellow Leaf Curl Virus Issued from Lycopersicon hirsutum. Phytopathology 88(9): 910–914.CrossRefGoogle Scholar
  134. Vinocur, B., and Altman, A. (2005). Recent Advances in Engineering Plant Tolerance to Abiotic Stress. Current Opinion in Biotechnology 16(2): 123–132.CrossRefGoogle Scholar
  135. Watson, J. D., and Crick, F. H. C. (1953). Molecular Structure of Nucleic Acids. Nature 171: 737–738.CrossRefGoogle Scholar
  136. Weston, D. P., Asbella, A. M., Hecht, S. A., Scholzc, N. L., and Lydy, M. J. (2011). Pyrethroid Insecticides in Urban Salmon Streams of the Pacific Northwest. Environmental Pollution 159(10): 3051–3056.CrossRefGoogle Scholar
  137. Whiten, A. (2017). How Culture Extends the Scope of Evolutionary Biology in the great apes. Proceedings of the National Academy of Sciences 114(30): 7790–7797.CrossRefGoogle Scholar
  138. Wiesenfeld, S. L. (1967). Sickle-Cell Trait in Human Biological and Cultural evolution. Science 157(3793): 1134–1140.CrossRefGoogle Scholar
  139. Wing, R. A., Purugganan, M. D., and Zhang, Q. (2018). The Rice Genome Revolution: From an Ancient Grain to Green Super Rice. Nature Reviews Genetics 1.
  140. Xu, J., Guo, Z., Su, L., Nedambale, T. L., Zhang, J., Schenk, J., Moreno, J. F., Dinnyés, A., Ji, W., Tian, X. C., Yang, X., and Du’, F. (2006). Developmental Potential of Vitrified Holstein Cattle Embryos Fertilized in vitro with Sex-Sorted Sperm. Journal of Dairy Science 89: 2510–2518.CrossRefGoogle Scholar
  141. Yorobe, J. M. Jr., and Smale, M. (2012). Impacts of Bt Maize on Smallholder Income in the Phillipines. AgBioForum 15: 152–162.Google Scholar
  142. Youn, H., Strumsky, D., Bettencourt, L. M. A., and Lobo, J. (2015). Invention as a Combinatorial Process. Journal of The Royal Society Interface 12(106): 20150272. Scholar
  143. Zambrano P, Lobnibe I, Cabanilla D.B., Maldonado JH and Falck-Zepeda J. (2013). Hiding in the plain sight: Women and GM crop adoption. Paper presented at the 17th ICABR Conference: Innovation and Policy for the Bioeconomy, June 18–21. Ravello, Italy.Google Scholar
  144. Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., and Schell, J. (1983). Ti Plasmid Vector for the Introduction of DNA into Plant Cells without Alteration of their Normal Regeneration Capacity. EMBO Journal 2: 2143–2150.CrossRefGoogle Scholar
  145. Zeder, M. A. (2015). Core Questions in Domestication Research. Proceedings of the National Academy of Sciences 112(11): 3191–3198. Scholar
  146. Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell 167(2): 313–324.CrossRefGoogle Scholar
  147. Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.-L., Wang, D., and Gao, C. (2017). Precise Base Editing in Rice, Wheat and Maize with a Cas9-Cytidine Deaminase Fusion. Nature Biotechnology 35: 438–440.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality SciencesThe Hebrew University of JerusalemRehovotIsrael
  2. 2.Institute of ArchaeologyUniversity College of LondonLondonUK
  3. 3.Human Behaviour and Cultural Evolution Group, Department of Biosciences, College of Life and Environmental SciencesUniversity of Exeter Cornwall CampusCornwallUK

Personalised recommendations