Advertisement

Agricultural Biodiversity Maintenance in a Coastal Socio-Ecological System: the Pearl Lagoon Basin, Nicaragua

  • Nicholas E. WilliamsEmail author
  • Daniel B. Kramer
Article
  • 47 Downloads

Abstract

Globalization processes, such as market pressures, tend to encourage farmers to reduce agricultural (or agro-) biodiversity. Yet, what is known about the drivers of agrobiodiversity erosion largely comes from research from communities in which farming is the principle natural resource-based livelihood. Focusing on Caribbean Nicaragua’s Pearl Lagoon Basin following the construction of the first regional road, we used a mixed methods approach to understand how the complex livelihood dynamics inherent in coastal socio-ecological systems—where households rely upon both terrestrial and aquatic resources—affect farmers’ decisions to maintain agrobiodiversity. Our analyses reveal atypical spatial patterns of agrobiodiversity maintenance relative to road access: the farming systems of households most proximal to the road are significantly more agrobiodiverse than those maintained by household in distant communities. This pattern is in part explained by local livelihood dynamics. Market access associated with road development encouraged the depletion of the lagoon fishery. To buffer their food security, households’ near to the road are focusing efforts on their historically biodiverse subsistence agricultural systems. These findings suggest that conservation efforts targeting coastal socio-ecological systems must account for the ways in which the complexity of natural resource-based livelihoods in these systems affect households’ responses to a changing world.

Keywords

Coastal socio-ecological systems Globalization Agricultural biodiversity Livelihood diversity Caribbean Nicaragua 

Notes

Acknowledgements

This work was supported by the U.S. National Science Foundation (CNH-0815966) and a National Socio-Environmental Synthesis Center (SESYNC), Helmholtz Centre for Environmental Research (UFZ), and German Center for Integrative Biodiversity Research (iDIV) Biodiversity and Ecosystem Services working group.

References

  1. Aguilar-Støen, M., Moe, S. R., and Camargo-Ricalde, S. L. (2008). Home Gardens Sustain Crop Diversity and Improve Farm Resilience in Candelaria Loxicha, Oaxaca, Mexico. Human Ecology 37(1): 55–77.  https://doi.org/10.1007/s10745-008-9197-y.CrossRefGoogle Scholar
  2. Altieri, M.A., and Merrick L.C. (1987). In Situ Conservation of Crop Genetic Resources through Maintenance of Traditional Farming Systems. 41 (1): 86–96.Google Scholar
  3. Armah, R. N. A., Al-hassan, R. M., Kuwornu, J. K. M., and Osei-Owuso, Y. (2013). What Influences Farmers ’ Choice of Indigenous Adaptation Strategies for Agrobiodiversity Loss In Northern Ghana? British Journal of Applied Science & Technology 3(4): 1162–1176.CrossRefGoogle Scholar
  4. Bardsley, D., and Thomas, I. (2005). In Situ Agrobiodiversity Conservation for Regional Development in Nepal. GeoJournal 62(1–2): 27–39.  https://doi.org/10.1007/s10708-004-1941-2.CrossRefGoogle Scholar
  5. Bartoń, K. (2013). MuMIn: Multi-Model Inference R Package. Version 1.42.1 .Google Scholar
  6. Beer, G., and Vanegas, S. (2007). Diagnóstico Para La Demarcación de Las Doce Comunidades Indígenas y Afrodescendientes de La Cuenca de Pearl Lagoon. Universidad de Regiones Autónomas de la Costa Caribe Nicaragüense (URACCAN) y Insituto de Recorsos Naturales, Medio Ambiente y Desarrollo Sostenible, Bluefields.Google Scholar
  7. Bellon, M. (2004). Conceptualizing Interventions to Support On-Farm Genetic Resource Conservation. World Development 32(1): 159–172.  https://doi.org/10.1016/j.worlddev.2003.04.007.CrossRefGoogle Scholar
  8. Bernard, H. R. (2006). Research Methods in Anthropology: Qualitative and Quantitative Approaches. Altamira Press, Lanham.Google Scholar
  9. Brown, A. H. D. (1999). The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In Brush, S. B. (ed.), Genes in the Field: Conserving Plant Diversity on Farms. Lewis Publishers, Boca Raton, pp. 29–48.Google Scholar
  10. Brush, S.B. (2004). Cultural research on the origin and maintenance of agricultural diversity. In Nature Knowledge. Ethnoscience, Cognition, and Utility, edited by Ortalli Sanga, Glauco Sanga, and Gherardo Ortalli. Berghahn Books, Brooklyn, pp. 379–85.Google Scholar
  11. Brush, S. B., and Perales, H. R. (2007). A maize Landscape: Ethnicity and Agro-Biodiversity in Chiapas Mexico. Agriculture, Ecosystems & Environment 121(3): 211–221.  https://doi.org/10.1016/j.agee.2006.12.018.CrossRefGoogle Scholar
  12. Brussaard, L., Caron, P., Campbell, B., Lipper, L., Mainka, S., Rabbinge, R., Babin, D., and Pulleman, M. (2010). Reconciling Biodiversity Conservation and Food Security: Scientific Challenges for a New Agriculture. Current Opinion in Environmental Sustainability 2(1–2): 34–42.  https://doi.org/10.1016/j.cosust.2010.03.007.CrossRefGoogle Scholar
  13. Burnham, K.P., and Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York.Google Scholar
  14. CGIAR Research Program on Aquatic Agricultural Systems. (2012). Resilient Livelihoods and Food Security in Coastal Aquatic Agricultural Systems: Investing in Transformational Change. Penang, Malaysia.Google Scholar
  15. Coe, F. G. (1997). Ethnobotany of the Miskitu of Eastern Nicaragua. Journal of Ethnobiology 17(2): 171–214.Google Scholar
  16. Coe, F. G., and Anderson, G. J. (1996). Ethnobotany of the Garífuna of Eastern Nicaragua. Economic Botany 50(1): 71–107.Google Scholar
  17. Conservation International. (2014). Hotspots - Conservation International. 2014. http://www.conservation.org/How/Pages/Hotspots.aspx. Accessed 14 Oct 2014.
  18. Coomes, O. T., and Burt, G. J. (1997). Indigenous Market-Oriented Agroforestry: Dissecting Local Diversity in Western Amazonia. Agroforestry Systems 37(1): 27–44.Google Scholar
  19. Ellis, F. (2000). Rural Livelihoods and Diversity in Developing Countries. Oxford University Press, New York.Google Scholar
  20. Everaert, G., Deschutter, Y., De Troch, M., Janssen, C.R., and De Schamphelaere, K. (2018). Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton. Journal of Marine Systems 181:91–98.Google Scholar
  21. Ferrol-Schulte, D., Wolff, M., Ferse, S., and Glaser, M. (2013). Sustainable Livelihoods Approach in Tropical Coastal and Marine Social–ecological Systems: A Review. Marine Policy 42(November): 253–258.  https://doi.org/10.1016/J.MARPOL.2013.03.007.CrossRefGoogle Scholar
  22. Garland, K. A., and Carthy, R. R. (2010). Changing Taste Preferences, Market Demands and Traditions in Pearl Lagoon, Nicaragua: A Community Reliant on Green Turtles for Income and Nutrition. Conservation and Society 8(1): 55.  https://doi.org/10.4103/0972-4923.62675.CrossRefGoogle Scholar
  23. Harvey, C. A., Komar, O., Chazdon, R., Ferguson, B. G., Finegan, B., Griffith, D. M., Martínez-Ramos, M., et al (2008). Integrating Agricultural Landscapes with Biodiversity Conservation in the Mesoamerican Hotspot. Conservation Biology : The Journal of the Society for Conservation Biology 22(1): 8–15.  https://doi.org/10.1111/j.1523-1739.2007.00863.x.CrossRefGoogle Scholar
  24. Helms, M. W. (1969). The Purchase Society : Adaptation to Economic Frontiers. Anthropological Quarterly 42(4): 325–342.CrossRefGoogle Scholar
  25. Helms, M.W. (1971). Asang Adaptations to Culture Contact in a Miskito Community. University Press of Florida, Gainesville.Google Scholar
  26. Huang, R. (2014). RQDA: R-Based Qualitative Data Analysis. Version 0.3-1http://rqda.r-forge.r-project.org/.
  27. Isakson, S. R. (2009). No Hay Ganancia En La Milpa: The Agrarian Question, Food Sovereignty, and the on-Farm Conservation of Agrobiodiversity in the Guatemalan Highlands. Journal of Peasant Studies 36(4): 725–759.  https://doi.org/10.1080/03066150903353876.CrossRefGoogle Scholar
  28. Jackson, L., Pascual, U., and Hodgkin, T. (2007). Utilizing and Conserving Agrobiodiversity in Agricultural Landscapes. Agriculture, Ecosystems & Environment 121(3): 196–210.  https://doi.org/10.1016/j.agee.2006.12.017.CrossRefGoogle Scholar
  29. Kramer, D. B., Stevens, K., Williams, N. E., Sistla, S. A., Roddy, A. B., and Urquhart, G. R. (2017). Coastal Livelihood Transitions under Globalization with Implications for Trans-Ecosystem Interactions. PLoS ONE 12(10): e0186683.  https://doi.org/10.1371/journal.pone.0186683.
  30. Kumar, B. M., and Nair, P. K. R. (2004). The enigma of tropical Homegardens. In Nair, P. K. R., Rao, M. R., and Buck, L. E. (eds.), New Vistas in Agroforestry: A Compendium for 1st World Congress of Agroforestry, 2004, Springer Netherlands, Dordrecht, pp. 135–152.  https://doi.org/10.1007/978-94-017-2424-1_10.CrossRefGoogle Scholar
  31. Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d’Horta, F. M., Wight, C., et al (2017). Damming the Rivers of the Amazon Basin. Nature 546(7658): 363–369.  https://doi.org/10.1038/nature22333.CrossRefGoogle Scholar
  32. Major, J., Clement, C. R., and DiTommaso, A. (2005). Influence of Market Orientation on Food Plant Diversity of Farms Located on Amazonian Dark Earth in the Region of Manaus, Amazonas, Brazil. Economic Botany 59(1): 77–86. https://doi.org/10.1663/0013-0001(2005)059[0077:IOMOOF]2.0.CO;2.Google Scholar
  33. McNeely, J. A., and Scherr, S. J. (2003). Ecoagriculture: Strategies to Feed the World and Save Wild Biodiversity, Island Press, Washington, DC.Google Scholar
  34. Nair, P. K. R. (1993). An Introduction to Agroforestry, Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  35. Nietschmann, B. (1973). Between Land and Water. Seminar Press, New York.Google Scholar
  36. Niñez, V.K. (1984). Nature and function of household gardens: general considerations. In Third Annual Farming Systems Research Conference Manhattan, Kansas, pp. 808–829.Google Scholar
  37. Perrault-Archambault, M., and Coomes, O. T. (2008). Distribution of Agrobiodiversity in Home Gardens along the Corrientes River, Peruvian Amazon. Economic Botany 62(2): 109–126.Google Scholar
  38. Perreault, T. (2005). Why Chacras (Swidden Gardens) Persist: Agrobiodiversity, Food Security, and Cultural Identity in the Ecuadorian Amazon. Human Organization 64(4): 327–339.CrossRefGoogle Scholar
  39. Perz, S. G. (2014). Sustainable Development: The Promise and Perils of Roads. Nature.  https://doi.org/10.1038/nature13744.
  40. R Core Team (2016). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria.  https://doi.org/10.1007/978-3-540-74686-7. CrossRefGoogle Scholar
  41. Rulli, M. C., Saviori, A., and D’Odorico, P. (2013). Global Land and Water Grabbing. Proceedings of the National Academy of Sciences of the United States of America.  https://doi.org/10.1073/pnas.1213163110.
  42. Schmitt, K. M., and Kramer, D. B. (2010). Road Development and Market Access on Nicaragua’s Atlantic Coast: Implications for Household Fishing and Farming Practices. Environmental Conservation 36(04): 289–300.  https://doi.org/10.1017/S0376892910000159.CrossRefGoogle Scholar
  43. Stevens, K., Irwin, B., Kramer, D., and Urquhart, G. (2014). Impact of Increasing Market Access on a Tropical Small-Scale Fishery. Marine Policy 50 (December): 46–52.  https://doi.org/10.1016/j.marpol.2014.05.007.
  44. Steward, A. (2013). Reconfiguring Agrobiodiversity in the Amazon Estuary: Market Integration, the Açaí Trade and Smallholders’ Management Practices in Amapá, Brazil. Human Ecology 41(6): 827–840.  https://doi.org/10.1007/s10745-013-9608-6.CrossRefGoogle Scholar
  45. Sunwar, S., Thornström, C.G., Subedi, A., and Bystrom, M. (2006). Home Gardens in Western Nepal: Opportunities and Challenges for on-Farm Management of Agrobiodiversity. Biodiversity and Conservation 15(13): 4211–4238.  https://doi.org/10.1007/s10531-005-3576-0.
  46. Terrer, C., Vicca, S.B., Hungate, A., Phillips, R.P., and Prentice, I.C. (2016). Mycorrhizal association as a primary control of the CO 2 fertilization effect. Science 353(6294):72–74.  https://doi.org/10.1126/science.aaf4610.
  47. Thrupp, L. A. (2000). Linking Agricultural Biodiversity and Food Security: The Valuable Role of Sustainable Agriculture. International Affairs 76(2): 265–281.  https://doi.org/10.1111/1468-2346.00133.CrossRefGoogle Scholar
  48. Van Dusen, M.E., and Taylor, J.E. (2005). Missing Markets and Crop Diversity: Evidence from Mexico. Environment and Development Economics 10(4): 513–531.  https://doi.org/10.1017/S1355770X05002317.
  49. Wade, L. (2016). A Nation Divided. Science 351(6270).  https://doi.org/10.1126/science.351.6270.220.
  50. Williams, N. E. (2016). The Political Ecology of ‘Ethnic’ Agricultural Biodiversity Maintenance in Atlantic Nicaragua. Journal of Political Ecology 23: 223–245.CrossRefGoogle Scholar
  51. Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I. G., et al (2016). Balancing Hydropower and Biodiversity in the Amazon, Congo, and Mekong. Science.  https://doi.org/10.1126/science.aac7082.
  52. Zimmerer, K. S. (2010). Biological Diversity in Agriculture and Global Change. Annual Review of Environment and Resources 35(1): 137–166.  https://doi.org/10.1146/annurev-environ-040309-113840.
  53. Zimmerer, K. S. (2014). Conserving Agrobiodiversity amid Global Change, Migration, and Nontraditional Livelihood Networks: The Dynamic Uses of Cultural Landscape Knowledge. Ecology and Society 19(2).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Interdisciplinary and Global Studies DivisionWorcester Polytechnic InstituteWorcesterUSA
  2. 2.James Madison College and Department of Fisheries & WildlifeMichigan State UniversityEast LansingUSA

Personalised recommendations