Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Phenotypes of hypertrophic cardiomyopathy: genetics, clinics, and modular imaging

Abstract

Hypertrophic cardiomyopathy (HCM) is the most common cardiovascular disease with genetic transmission, characterized by the hypertrophy of any segment of the left ventricle (LV), not totally explained by improper loading conditions, with LV systolic function preserved, increased, or reduced. The histopathological mechanism involved in HCM refers to the primary injury of the myocardium, as follows: disorganized array of myocytes, extracellular matrix modification, microvascular dysfunction, with subsequent appearance of myocardial fibrosis. Multiple sarcomere proteins mutations are responsible for HCM, but two of them are involved in 70% of the cases of HCM: β-myosin heavy chain (MYH7) and myosin-binding protein C (MYBPC3). The development of new genetic techniques involving genome editing is promising to discover a gene therapy for patients with HCM. Clinical presentation may differ from asymptomatic to sudden cardiac death (SCD), the last one targeting younger adults. In this case, the diagnosis and evaluation of SCD risk factors is extremely important. The common method of diagnosis is transthoracic echocardiography, but cardiac magnetic resonance (CMR) imaging represents “gold standard” in the evaluation of HCM patients. Treatment includes pharmacological therapy, surgery, alcohol ablation, and not least SCD prevention.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy. Lancet. https://doi.org/10.1016/S0140-6736(12)60397-3

  2. 2.

    Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS (2014) Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2014.05.003

  3. 3.

    Barry J, Macron MS, Olivotto I (2019) Hypertrophic cardiomyopathy. In: Zipes DP, Peter L, Bonow RO, Mann DL, Tomaselli GF, Braunwald E (eds) Braunwald’s Heart Disease. A Textbook of Cardiovascular Medicine, 11th edn. Elsevier/Saunders, Philadelphia, pp 1602–1616

  4. 4.

    Seidman CE, Seidman JG (2011) Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circ Res. https://doi.org/10.1161/CIRCRESAHA.110.223834

  5. 5.

    Maron MS, Hellawell JL, Lucove JC, Farzaneh-Far R, Olivotto I (2016) Occurence of clinically diagnosed hypertrophic cardiomyopathy in the United States. Am J Cardiol. https://doi.org/10.1016/j.amjcard.2016.02.044

  6. 6.

    Charron P, Arad M, Arbustini E et al (2010) Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial an Pericardial Diseases. Eur Heart J. https://doi.org/10.1093/eurheartj/ehq271

  7. 7.

    Weinstock J, Bader YH, Maron MS, Rowin EJ, Link MS (2016) Subcutaneous implantable cardioverter defibrillator in patients with hypertrophic cardiomyopathy: an initial experience. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002488

  8. 8.

    Rosca M, Popescu B (2017) Cardiomiopatia hipertrofica. In: Ginghina C (ed) Mic tratat de cardiologie, 2nd edn. Editura Academiei Romane, Bucuresti, pp 399–414

  9. 9.

    Gersh BJ, Maron BJ, Bonow RO et al (2011) 2011ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2011.10.825

  10. 10.

    Yuan CC, Kazmierczak K, Liang J et al (2017) Hypercontractile mutant of ventricular myosin essential light chain leads to disruption of sarcomeric structure and function and results in restrictive cardiomyopathy in mice. Cardiovasc Res. https://doi.org/10.1093/cvr/cvx060

  11. 11.

    Yotti R, Seidman CE, Seidman JG (2019) Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu Rev Genomics Hum Genet. https://doi.org/10.1146/annurev-genom-083118-015306

  12. 12.

    Nagueh SF, Bierig SM, Budoff MF et al (2011) American Society of Echocardiography clinical recommendations for multimodalitycardiovascular imaging of patients with hypertrophic cardiomyopathy: endorsed by the American Society of Nuclear Cardiology, Society for Cardiovascular Magnetic Resonance, and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2011.03.006

  13. 13.

    Velden J, Stienen GJM (2018) Cardiac disorders and pathophysiology of sarcomeric proteins. Physiol Rev. https://doi.org/10.1152/physrev.00040.2017

  14. 14.

    Davis J, Davis LC, Correll RN et al (2016) A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy. Cell. https://doi.org/10.1016/j.cell.2016.04.002

  15. 15.

    Chandra M, Tschirgi ML, Tardiff JC (2005) Increase in tension-dependent ATP consumption induced by cardiac troponin T mutation. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.00571.2005

  16. 16.

    Coppini R, Ferrantini C, Yao L et al (2013) Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.112.134932

  17. 17.

    Witjas-Paalberends ER, Güçlü A, Germans T et al (2014) Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res. https://doi.org/10.1093/cvr/cvu127

  18. 18.

    Bittencourt MI, Cader SA, Araujo DV et al (2019) Role of myocardial fibrosis in hypertrophic cardiomyopathy: a systematic review and updated meta-analysis of risk markers for sudden death. Arq Bras Cardiol. https://doi.org/10.5935/abc.20190045

  19. 19.

    Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. https://doi.org/10.1016/s0735-1097(86)80181-4

  20. 20.

    Foa A, Agostini V, Rapezzi C et al (2019) Histopathological comparison of intramural coronary artery remodeling and myocardial fibrosis in obstructive versus end-stage hypertrophic cardiomyopathy. Int J Cardiol. https://doi.org/10.1016/j.ijcard.2019.03.060

  21. 21.

    Ashley EA, Reuter CM, Wheeler MT (2018) Genome sequencing in hypertrophic cardiomyopathy. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.05.029

  22. 22.

    Bagnall R, Ingles J, Dinger ME et al (2018) Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.04.078

  23. 23.

    Prondzynski M, Mearini G, Carrier L (2019) Gene therapy strategies in the treatment of hypertrophic cardiomyopathy. Pfluguers Arch 471:807–815. https://doi.org/10.1007/s00424-018-2173-5

  24. 24.

    Ma H, Marti-Gutierrez N, Park SW et al (2017) Correction of a pathogenic gene mutation in human embryos. Nature. https://doi.org/10.1038/nature23305

  25. 25.

    Ferrantini C, Coppini R, Pioner JM et al (2017) Pathogenesis of hypertrophic cardiomyopathy is mutation rather than disease specific: a comparison of the cardiac troponin T E163R and R92Q mouse models. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.005407

  26. 26.

    Jiang J, Wakimoto H, Seidman JG, Seidman CE (2013) Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science. https://doi.org/10.1126/science.1236921

  27. 27.

    Kelly BS, Mattu A, Brady WJ (2007) Hypertrophic cardiomyopathy: electrocardiographic manifestations and other important considerations for the emergency physician. Am J Emerg Med 25(1):72–79

  28. 28.

    Afonso LC, Bernal J, Bax JJ, Abraham TP (2008) Echocardiography in hypertrophic cardiomyopathy: the role of conventional and emerging technologies. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2008.09.002

  29. 29.

    Parato VM, Antonececchi V, Sozzi F et al (2016) Echocardiographic diagnosis of the different phenotypes of hypertrophic cardiomyopathy. Cardiovasc Ultrasound 14:1–12. https://doi.org/10.1186/s12947-016-0072-5

  30. 30.

    Serri K, Reant P, Lafitte M et al (2006) Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2005.10.061

  31. 31.

    Haland TF, Edvardsen T (2019) The role of echocardiography in management of hypertrophic cardiomyopathy. J Echocardiogr. https://doi.org/10.1007/s12574-019-00454-9

  32. 32.

    Jan MF, Tajik AJ (2017) Modern imaging techniques in cardiomyopathies. Circ Res. https://doi.org/10.1161/CIRCRESAHA.117.309600

  33. 33.

    Vasquez N, Ostrander BT, Lu DY et al (2019) Low left atrial strain is associated with adverse outcomes in hypertrophic cardiomyopathy patients. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2019.01.007

  34. 34.

    Maron MS, Appelbaum E, Harrigan CJ et al (2008) Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail. https://doi.org/10.1161/CIRCHEARTFAILURE.108.768119

  35. 35.

    Rickers C, Wilke NM, Jerosch-Herold M et al (2005) Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.104.507723

  36. 36.

    Massera D, McClelland RL, Ambale-Venkatesh B et al (2019) Prevalence of unexplained left ventricular hypertrophy by cardiac magnetic resonance imaging in MESA. J Am Heart Assoc. https://doi.org/10.1161/JAHA.119.012250

  37. 37.

    Olivotto I, Cecchi F, Poggesi C, Yacoub MH (2012) Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail. https://doi.org/10.1161/CIRCHEARTFAILURE.112.967026

  38. 38.

    Hughes SE (2004) The pathology of hypertrophic cardiomyopathy. Histopathology. https://doi.org/10.1111/j.1365-2559.2004.01835.x

  39. 39.

    Maron MS (2012) Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. https://doi.org/10.1186/1532-429X-14-13

  40. 40.

    Moon JC, Fisher NG, McKenna WJ, Pennell DJ (2004) Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart. https://doi.org/10.1136/hrt.2003.014969

  41. 41.

    Todiere G, Nugara C, Gentile G et al (2019) Prognostic role of late gadolinium enhancement in patients with hypertrophic cardiomyopathy and low-to-intermediate sudden cardiac death risk score. Am J Cardiol. https://doi.org/10.1016/j.amjcard.2019.07.023

  42. 42.

    Xu J, Zhuang B, Sirajuddin A et al (2019) MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction. Radiology. https://doi.org/10.1148/radiol.2019190651

  43. 43.

    Swoboda PP, McDiarmid AK, Erhayiem B et al (2016) Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete’s heart. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2016.02.054

  44. 44.

    Ellims AH, Iles LM, Ling LH, Hare JL, Kaye DM, Taylor AJ (2012) Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diastolic dysfunction. J Cardiovasc Magn Reson. https://doi.org/10.1186/1532-429X-14-76

  45. 45.

    Captur G, Lopes LR, Patel V et al (2014) Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. Circ Cardiovasc Genet. https://doi.org/10.1161/CIRCGENETICS.113.000362

  46. 46.

    Efthmiadis GK, Pagourelias ED, Hadjimiltiades S, Meditskou S, Karvounis H, McKenna WJ (2015) Feasibility and significance of preclinical diagnosis in hypertrophic cardiomyopathy. Cardiol Rev. https://doi.org/10.1097/CRD.0000000000000076

  47. 47.

    Urbano-Moral JA, Gutierrez-Garcia-Moreno L, Rodrigues-Palomares JF et al (2019) Structural abnormalities in hypertrophic cardiomyopathy beyond left ventricular hypertrophy by multimodality imaging evaluation. Echocardiography. https://doi.org/10.1111/echo.14393

  48. 48.

    Patel P, Dhillon A, Popovic ZB et al (2015) Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy patients without severe septal hypertrophy: implications of mitral valve and papillary muscle abnormalities assessed using cardiac magnetic resonance and echocardiography. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.115.003132

  49. 49.

    Elliott PM, Anastasakis A, Borger MA et al (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. https://doi.org/10.1093/eurheartj/ehu284

  50. 50.

    Baxi AJ, Restrepo CS, Vargas D, Marmol-Velez A, Ocazionez D, Murillo H (2016) Hypertrophic cardiomyopathy from a to Z: genetics, pathophysiology, imaging, and management. Radiographics. https://doi.org/10.1148/rg.2016150137

  51. 51.

    Minami Y, Kajimoto K, Terajima Y et al (2011) Clinical implications of midventricular obstruction in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2011.02.033

  52. 52.

    Maron MS, Finley JJ, Bos JM et al (2008) Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.108.781401

  53. 53.

    Maron MS, Maron BJ, Harrigan C et al (2009) Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2009.05.006

  54. 54.

    Bergey PD, Axel L (2000) Focal hypertrophic cardiomyopathy simulating a mass: MR tagging for correct diagnosis. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.174.1.1740242

  55. 55.

    Rowin EJ, Maron MS (2016) The role of cardiac MRI in the diagnosis and risk stratification of hypertrophic cardiomyopathy. ArrhythmElectrophysiol Rev. https://doi.org/10.15420/aer.2016:13:3

  56. 56.

    Kawarai K, Kajimoto K, Minami Y, Hagiwara N, Kasanuki H (2011) Risk of sudden death in end-stage hypertrophic cardiomyopathy. J Card Fail. https://doi.org/10.1016/j.cardfail.2011.01.015

  57. 57.

    Maron MS, Hauser TH, Dubrow E et al (2007) Right ventricular involvement in hypertrophic cardiomyopathy. Am J Cardiol. https://doi.org/10.1016/j.amjcard.2007.05.061

  58. 58.

    Wu XP, Li YD, Wang YD et al (2019) Impaired right ventricular mechanics at rest and during exercise are associated with exercise capacity in patients with hypertrophic cardiomyopathy. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.011269

  59. 59.

    Harris KM, Spirito P, Maron MS et al (2006) Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.105.583500

  60. 60.

    Leschka S, Koepfli P, Husmann L et al (2008) Myocardial bridging: depiction rate and morphology at CT coronary angiography--comparison with conventional coronary angiography. Radiology. https://doi.org/10.1148/radiol.2463062071

  61. 61.

    Campisi R, Marengo FD (2017) Coronary microvascular dysfunction in women with nonobstructive ischemic heart disease as assessed by positron emission tomography. Cardiovasc Diagn Ther. https://doi.org/10.21037/cdt.2017.04.08

  62. 62.

    Bravo PE, Di Carli MF, Dorbala S (2017) Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev 22:455–464. https://doi.org/10.1007/s10741-017-9628-1

  63. 63.

    Ommen SR, Gersh BJ (2009) Sudden cardiac death risk in hypertrophic cardiomyopathy. Eur Heart J. https://doi.org/10.1093/eurheartj/ehp307

  64. 64.

    Maron MS, Rowin EJ, Wessler BS et al (2019) Enhanced American College of Cardiology/American Heart Association Strategy for prevention of sudden cardiac death in high-risk patients with hypertrophic cardiomyopathy. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2019.1391

  65. 65.

    Mentias A, Raeisi-Giglou P, Smedira NG et al (2018) Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.05.060

  66. 66.

    Kang KW, Janardhan AH, Jung KT, Lee HS, Lee MH, Hwang HJ (2014) Fragmented QRS as a candidate marker for high-risk assessment in hypertrophic cardiomyopathy. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2014.05.002

  67. 67.

    Lu X, Wang W, Zhu L (2017) Prognostic significance of fragmented QRS in patients with hypertrophic cardiomyopathy. Cardiology. https://doi.org/10.1159/000471845

  68. 68.

    Vaughan Tusohy C, Kaul S, Song HK, Nazer B, Heitner SB (2020) Hypertrophic cardiomyopathy: the future of treatment. Eur Heart J. https://doi.org/10.1002/ejhf.1715

  69. 69.

    Heitner SB, Jacoby D, Lester SJ et al (2019) Mavacamten treatment for obstructive hypertrophic cardiomyopathy. Ann Intern Med. https://doi.org/10.7326/M18-3016

  70. 70.

    Ammirati E, Contri R, Coppini R, Cecchi F, Frigerio M, Olivotto I (2016) Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. Eur J Heart Fail. https://doi.org/10.1002/ejhf.541

  71. 71.

    Axelsson A, Iversen K, Vejlstrup N et al (2015) Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: the INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. https://doi.org/10.1016/S2213-8587(14)70241-4

  72. 72.

    Singh K, Qutub M, Carson K, Hibbert B, Glover C (2016) A meta analysis of current status of alcohol septal ablation and surgical myectomy for obstructive hypertrophic cardiomyopathy. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.26293

  73. 73.

    Kim LK, Swaminathan RV, Looser P et al (2017) Hospital volume outcomes after septal myectomy and alcohol septal ablation for treatment of obstructive hypertrophic cardiomyopathy: US Nationwide inpatient database, 2003–2011. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2016.0252

  74. 74.

    Guo HC, Li JH, Jiang TJ et al (2018) Comparison of clinical effects between percutaneous transluminal septal myocardial ablation and modified Morrow septal myectomy on patients with hypertrophic cardiomyopathy. Chin Med J. https://doi.org/10.4103/0366-6999.226075

  75. 75.

    Rigopoulos AG, Sakellaropoulos S, Ali M et al (2018) Transcatheter septal ablation in hypertrophic obstructive cardiomyopathy: a technical guide and review of published results. Heart Fail Rev 23:907–917. https://doi.org/10.1007/s10741-018-9706-z

  76. 76.

    Dearani JA, Ommen SR, Gersh BJ, Schaff HV, Danielson GK (2007) Surgery insight: Septal myectomy for obstructive hypertrophic cardiomyopathy – the Mayo Clinic experience. Nat Clin Pract Cardiovasc Med. https://doi.org/10.1038/ncpcardio0965

  77. 77.

    Fang J, Wang R, Liu H et al (2019) Transapical septal myectomy in the beating heart via a minimally invasive approach: a feasibility study in swine. Interact Cardiovasc Thorac Surg. https://doi.org/10.1093/icvts/ivz249

  78. 78.

    Kato TS, Takayama H, Yoshizawa S et al (2012) Cardiac transplantation in patients with hypertrophic cardiomyopathy. Am J Cardiol. https://doi.org/10.1016/j.amjcard.2012.04.030

  79. 79.

    Hebl VB, Miranda WR, Ong KC et al (2016) The natural history of nonobstructive hypertrophic cardiomyopathy. Mayo Clin Proc. https://doi.org/10.1016/j.mayocp.2016.01.002

Download references

Author information

Both authors have contributed substantially to the conception and design of this review. There was equal contribution in collecting the data and co-writing the paper. All authors approved the final revision to be published.

Correspondence to Lucia Agoston-Coldea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muresan, I.D., Agoston-Coldea, L. Phenotypes of hypertrophic cardiomyopathy: genetics, clinics, and modular imaging. Heart Fail Rev (2020). https://doi.org/10.1007/s10741-020-09931-1

Download citation

Keywords

  • Hypertrophic cardiomyopathy
  • Genetics
  • Cardiac magnetic resonance
  • Echocardiography
  • Modular imaging