Multimodality imaging predictors of sudden cardiac death

  • Fancesco Bandera
  • Lilit BaghdasaryanEmail author
  • Giulia Elena Mandoli
  • Matteo Cameli


Sudden cardiac death (SCD) is the worst clinical event occurring in the clinical context of cardiomyopathies. Current guidelines recommend using LV ejection fraction as the only imaging-derived parameter to identify patients who may benefit from ICD implantation in cardiomyopathies with reduced ejection fraction; however, a relevant proportion of high-risk population is left with unmet therapeutic goal. In case of dilated, hypertrophic, or arrhythmogenic cardiomyopathies, there is still a room for more sensitive and specific risk markers for identifying a cluster at higher risk of SCD. In this paper, we reviewed the evidence supporting the use of advanced echocardiography, CMR, and nuclear cardiology for SCD stratification in patients with the most common cardiomyopathies. The added value of these modalities may be explained on the basis of tissue characterization, especially scar detection, a central player in the pathogenesis of arrhythmias. Therefore, integration of these modalities to our everyday clinical practice may help in dealing with the gray zones where current guidelines are still ineffective for patient selection.


Sudden cardiac death Multimodality imaging Cardiomyopathy Hypertrophic Arrhythmogenic Dilated Global longitudinal strain Cardiac magnetic resonance Nuclear imaging 



Lilit Baghdasaryan acknowledges funding received from the European Society of Cardiology in form of an ESC Training Grant.

Funding information

No funding for this article.

Compliance with ethical standards

Conflict of interest

Dr. Lilit Baghdasaryan has received an educational grant from Servier to attend the “Heart Failure Postgraduate Course London 2019/2020.” Francesco Bandera, Giulia Elena Mandoli, and Matteo Cameli declare that they have no disclosures.


  1. 1.
    Yousuf O, Chrispin J, Tomaselli GF, Berger RD (2015) Clinical management and prevention of sudden cardiac death. Circ Res 116(12):2020–2040PubMedCrossRefGoogle Scholar
  2. 2.
    Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna W, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29(2):270–276PubMedCrossRefGoogle Scholar
  3. 3.
    Weintraub RG, Semsarian C, Macdonald P (2017) Dilated cardiomyopathy. Lancet. 390(10092):400–414PubMedCrossRefGoogle Scholar
  4. 4.
    Deyell MW, Krahn AD, Goldberger JJ (2015) Sudden cardiac death risk stratification. Circ Res 116(12):1907–1918PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Klein L, Hsia H (2014) Sudden cardiac death in heart failure. Cardiol Clin 32(1):135–144 ixPubMedCrossRefGoogle Scholar
  6. 6.
    Rosanio S, Schwarz ER, Vitarelli A, Zarraga IG, Kunapuli S, Ware DL, Birnbaum Y, Tuero E, Uretsky BF (2007) Sudden death prophylaxis in heart failure. Int J Cardiol 119(3):291–296PubMedCrossRefGoogle Scholar
  7. 7.
    Vaduganathan M, Claggett BL, Chatterjee NA, Anand IS, Sweitzer NK, Fang JC, O'Meara E, Shah SJ, Hegde SM, Desai AS, Lewis EF, Rouleau J, Pitt B, Pfeffer MA, Solomon SD (2018) Sudden death in heart failure with preserved ejection fraction: a competing risks analysis from the TOPCAT trial. JACC Heart failure. 6(8):653–661PubMedCrossRefGoogle Scholar
  8. 8.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Myerburg RJ, Spooner PM (2001) Opportunities for sudden death prevention: directions for new clinical and basic research. Cardiovasc Res 50(2):177–185PubMedCrossRefGoogle Scholar
  10. 10.
    Daubert JP, Zareba W, Cannom DS, McNitt S, Rosero SZ, Wang P, Schuger C, Steinberg JS, Higgins SL, Wilber DJ, Klein H, Andrews ML, Hall WJ, Moss AJ, MADIT II Investigators (2008) Inappropriate implantable cardioverter-defibrillator shocks in MADIT II: frequency, mechanisms, predictors, and survival impact. J Am Coll Cardiol 51(14):1357–1365PubMedCrossRefGoogle Scholar
  11. 11.
    van Welsenes GH, van Rees JB, Borleffs CJ, Cannegieter SC, Bax JJ, van Erven L et al (2011) Long-term follow-up of primary and secondary prevention implantable cardioverter defibrillator patients. Europace 13(3):389–394PubMedCrossRefGoogle Scholar
  12. 12.
    Shore S, Grau-Sepulveda MV, Bhatt DL, Heidenreich PA, Eapen ZJ, Hernandez AF et al (2015) Characteristics, treatments, and outcomes of hospitalized heart failure patients stratified by etiologies of cardiomyopathy. JACC Heart Fail 3(11):906–916PubMedCrossRefGoogle Scholar
  13. 13.
    McNally EM, Mestroni L (2017) Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res 121(7):731–748PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    McMurray JJ (2016) The ICD in heart failure—time for a rethink? N Engl J Med 375(13):1283–1284PubMedCrossRefGoogle Scholar
  15. 15.
    Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Korup E et al (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230PubMedCrossRefGoogle Scholar
  16. 16.
    Luni FK, Singh H, Khan AR, Malik SA, Khawaja O, Riaz H et al (2017) Mortality effect of ICD in primary prevention of nonischemic cardiomyopathy: a meta-analysis of randomized controlled trials. J Cardiovasc Electrophysiol 28(5):538–543PubMedCrossRefGoogle Scholar
  17. 17.
    Khan SU, Ghimire S, Talluri S, Rahman H, Khan MU, Nasir F, Kaluski E (2018) Implantable cardioverter defibrillator in nonischemic cardiomyopathy: a systematic review and meta-analysis. J Arrhythm 34(1):4–10PubMedCrossRefGoogle Scholar
  18. 18.
    van der Bijl P, Delgado V, Bax JJ (2016) Noninvasive imaging markers associated with sudden cardiac death. Trends Cardiovasc Med 26(4):348–360PubMedCrossRefGoogle Scholar
  19. 19.
    Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J et al (2015) 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 36(41):2793–2867PubMedCrossRefGoogle Scholar
  20. 20.
    Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 12(3):167–205PubMedCrossRefGoogle Scholar
  21. 21.
    Cameli M, Mandoli GE, Sciaccaluga C, Mondillo S (2019) More than 10 years of speckle tracking echocardiography: still a novel technique or a definite tool for clinical practice? Echocardiography. 36(5):958–970PubMedCrossRefGoogle Scholar
  22. 22.
    Cameli M, Mondillo S, Solari M, Righini FM, Andrei V, Contaldi C, de Marco E, di Mauro M, Esposito R, Gallina S, Montisci R, Rossi A, Galderisi M, Nistri S, Agricola E, Mele D (2016) Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion. Heart Fail Rev 21(1):77–94PubMedCrossRefGoogle Scholar
  23. 23.
    Cameli M, Mondillo S, Righini FM, Lisi M, Dokollari A, Lindqvist P, Maccherini M, Henein M (2016) Left ventricular deformation and myocardial fibrosis in patients with advanced heart failure requiring transplantation. J Card Fail 22(11):901–907PubMedCrossRefGoogle Scholar
  24. 24.
    Sutherland GR (2017) Sudden cardiac death: the pro-arrhythmic interaction of an acute loading with an underlying substrate. Eur Heart J 38(40):2986–2994PubMedGoogle Scholar
  25. 25.
    Haugaa KH, Smedsrud MK, Steen T, Kongsgaard E, Loennechen JP, Skjaerpe T et al (2010) Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. J Am Coll Cardiol Img 3(3):247–256CrossRefGoogle Scholar
  26. 26.
    Ersboll M, Valeur N, Andersen MJ, Mogensen UM, Vinther M, Svendsen JH et al (2013) Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction. J Am Coll Cardiol Img 6(8):851–860CrossRefGoogle Scholar
  27. 27.
    Haugaa KH, Grenne BL, Eek CH, Ersboll M, Valeur N, Svendsen JH et al (2013 Aug) Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. J Am Coll Cardiol Img 6(8):841–850CrossRefGoogle Scholar
  28. 28.
    Leong DP, Hoogslag GE, Piers SR, Hoke U, Thijssen J, Marsan NA et al (2015) The relationship between time from myocardial infarction, left ventricular dyssynchrony, and the risk for ventricular arrhythmia: speckle-tracking echocardiographic analysis. J Am Soc Echocardiogr 28(4):470–477PubMedCrossRefGoogle Scholar
  29. 29.
    Ng AC, Bertini M, Borleffs CJ, Delgado V, Boersma E, Piers SR, Thijssen J, Nucifora G, Shanks M, Ewe SH, Biffi M, van de Veire N, Leung DY, Schalij MJ, Bax JJ (2010) Predictors of death and occurrence of appropriate implantable defibrillator therapies in patients with ischemic cardiomyopathy. Am J Cardiol 106(11):1566–1573PubMedCrossRefGoogle Scholar
  30. 30.
    Haugaa KH, Goebel B, Dahlslett T, Meyer K, Jung C, Lauten A, Figulla HR, Poerner TC, Edvardsen T (2012) Risk assessment of ventricular arrhythmias in patients with nonischemic dilated cardiomyopathy by strain echocardiography. J Am Soc Echocardiogr 25(6):667–673PubMedCrossRefGoogle Scholar
  31. 31.
    Negishi K, Negishi T, Zardkoohi O, Ching EA, Basu N, Wilkoff BL, Popović ZB, Marwick TH (2016) Left atrial booster pump function is an independent predictor of subsequent life-threatening ventricular arrhythmias in non-ischaemic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17(10):1153–1160PubMedCrossRefGoogle Scholar
  32. 32.
    Pontone G, Guaricci AI, Andreini D, Solbiati A, Guglielmo M, Mushtaq S, Baggiano A, Beltrama V, Fusini F, Rota C, Segurini C, Conte E, Gripari P, Dello Russo A, Moltrasio M, Tundo F, Lombardi F, Muscogiuri G, Lorenzoni V, Tondo C, Agostoni P, Bartorelli AL, Pepi M (2016) Prognostic benefit of cardiac magnetic resonance over transthoracic echocardiography for the assessment of ischemic and nonischemic dilated cardiomyopathy patients referred for the evaluation of primary prevention implantable cardioverter-defibrillator therapy. Circ Cardiovasc Imaging 9(10):e004956Google Scholar
  33. 33.
    Mikami Y, Jolly U, Heydari B, Peng M, Almehmadi F, Zahrani M, Bokhari M, Stirrat J, Lydell CP, Howarth AG, Yee R, White JA (2017) Right ventricular ejection fraction is incremental to left ventricular ejection fraction for the prediction of future arrhythmic events in patients with systolic dysfunction. Circ Arrhythm Electrophysiol 10(1):e004067.
  34. 34.
    Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Sonnenblick EH, Olivetti G, Anversa P (1995) The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol 27(1):291–305PubMedCrossRefGoogle Scholar
  35. 35.
    de Bakker JM, van Capelle FJ, Janse MJ, Tasseron S, Vermeulen JT, de Jonge N, Lahpor JR (1996) Fractionated electrograms in dilated cardiomyopathy: origin and relation to abnormal conduction. J Am Coll Cardiol 27(5):1071–1078PubMedCrossRefGoogle Scholar
  36. 36.
    Hsia HH, Marchlinski FE (2002) Electrophysiology studies in patients with dilated cardiomyopathies. Card Electrophysiol Rev 6(4):472–481PubMedCrossRefGoogle Scholar
  37. 37.
    Bilchick KC (2016) The fault is in our scars: LGE and ventricular arrhythmia risk in LV dysfunction. J Am Coll Cardiol Img 9(9):1056–1058CrossRefGoogle Scholar
  38. 38.
    Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK, Gerstenblith G, Weiss RG, Marbán E, Tomaselli GF, Lima JA, Wu KC (2007) Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation. 115(15):2006–2014PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liuba I, Marchlinski FE (2013) The substrate and ablation of ventricular tachycardia in patients with nonischemic cardiomyopathy. Circ J 77(8):1957–1966PubMedCrossRefGoogle Scholar
  40. 40.
    Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48(10):1977–1985PubMedCrossRefGoogle Scholar
  41. 41.
    Roes SD, Borleffs CJ, van der Geest RJ, Westenberg JJ, Marsan NA, Kaandorp TA, Reiber JH, Zeppenfeld K, Lamb HJ, de Roos A, Schalij MJ, Bax JJ (2009) Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging. 2(3):183–190PubMedCrossRefGoogle Scholar
  42. 42.
    Disertori M, Rigoni M, Pace N, Casolo G, Mase M, Gonzini L et al (2016) Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta-analysis. J Am Coll Cardiol Img 9(9):1046–1055CrossRefGoogle Scholar
  43. 43.
    Scott PA, Rosengarten JA, Curzen NP, Morgan JM (2013) Late gadolinium enhancement cardiac magnetic resonance imaging for the prediction of ventricular tachyarrhythmic events: a meta-analysis. Eur J Heart Fail 15(9):1019–1027PubMedCrossRefGoogle Scholar
  44. 44.
    Kuruvilla S, Adenaw N, Katwal AB, Lipinski MJ, Kramer CM, Salerno M (2014) Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: a systematic review and meta-analysis. Circ Cardiovasc Imaging 7(2):250–258PubMedCrossRefGoogle Scholar
  45. 45.
    Di Marco A, Anguera I, Schmitt M, Klem I, Neilan TG, White JA et al (2017) Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail. 5(1):28–38PubMedCrossRefGoogle Scholar
  46. 46.
    Halliday BP, Baksi AJ, Gulati A, Ali A, Newsome S, Izgi C et al (2019) Outcome in dilated cardiomyopathy related to the extent, location, and pattern of late gadolinium enhancement. J Am Coll Cardiol Img 12(8 Pt 2):1645–1655CrossRefGoogle Scholar
  47. 47.
    Acosta J, Fernandez-Armenta J, Borras R, Anguera I, Bisbal F, Marti-Almor J et al (2018) Scar characterization to predict life-threatening arrhythmic events and sudden cardiac death in patients with cardiac resynchronization therapy: the GAUDI-CRT study. J Am Coll Cardiol Img 11(4):561–572CrossRefGoogle Scholar
  48. 48.
    Halliday BP, Gulati A, Ali A, Guha K, Newsome S, Arzanauskaite M, Vassiliou VS, Lota A, Izgi C, Tayal U, Khalique Z, Stirrat C, Auger D, Pareek N, Ismail TF, Rosen SD, Vazir A, Alpendurada F, Gregson J, Frenneaux MP, Cowie MR, Cleland JGF, Cook SA, Pennell DJ, Prasad SK (2017) Association between midwall late gadolinium enhancement and sudden cardiac death in patients with dilated cardiomyopathy and mild and moderate left ventricular systolic dysfunction. Circulation. 135(22):2106–2115PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Vita T, Grani C, Abbasi SA, Neilan TG, Rowin E, Kaneko K et al (2019) Comparing CMR mapping methods and myocardial patterns toward heart failure outcomes in nonischemic dilated cardiomyopathy. J Am Coll Cardiol Img 12(8 Pt 2):1659–1669CrossRefGoogle Scholar
  50. 50.
    Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S et al (2016) T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. J Am Coll Cardiol Img 9(1):40–50CrossRefGoogle Scholar
  51. 51.
    Chen Z, Sohal M, Voigt T, Sammut E, Tobon-Gomez C, Child N et al (2015) Myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non-ischemic cardiomyopathy patients with implantable cardioverter-defibrillators. Heart Rhythm 12(4):792–801PubMedCrossRefGoogle Scholar
  52. 52.
    Piccini JP, Horton JR, Shaw LK, Al-Khatib SM, Lee KL, Iskandrian AE et al (2008 Nov) Single-photon emission computed tomography myocardial perfusion defects are associated with an increased risk of all-cause death, cardiovascular death, and sudden cardiac death. Circ Cardiovasc Imaging. 1(3):180–188PubMedCrossRefGoogle Scholar
  53. 53.
    Piccini JP, Starr AZ, Horton JR, Shaw LK, Lee KL, Al-Khatib SM et al (2010) Single-photon emission computed tomography myocardial perfusion imaging and the risk of sudden cardiac death in patients with coronary disease and left ventricular ejection fraction>35%. J Am Coll Cardiol 56(3):206–214PubMedCrossRefGoogle Scholar
  54. 54.
    Goldberger JJ, Hendel RC (2015) Decision making for implantable cardioverter defibrillator implantation: is there a role for neurohumoral imaging? Circ Cardiovasc Imaging 8(12):e004275Google Scholar
  55. 55.
    Bengel FM, Thackeray JT (2014) Altered cardiac innervation predisposes to ventricular arrhythmia: targeted positron emission tomography identifies risk in ischemic cardiomyopathy. J Am Coll Cardiol 63(2):150–152PubMedCrossRefGoogle Scholar
  56. 56.
    Al Badarin FJ, Wimmer AP, Kennedy KF, Jacobson AF, Bateman TM (2014) The utility of ADMIRE-HF risk score in predicting serious arrhythmic events in heart failure patients: incremental prognostic benefit of cardiac 123I-mIBG scintigraphy. J Nucl Cardiol 21(4):756–762 quiz 3-55, 63-5PubMedCrossRefGoogle Scholar
  57. 57.
    Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr et al (2014) Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 63(2):141–149PubMedCrossRefGoogle Scholar
  58. 58.
    Sood N, Al Badarin F, Parker M, Pullatt R, Jacobson AF, Bateman TM et al (2013) Resting perfusion MPI-SPECT combined with cardiac 123I-mIBG sympathetic innervation imaging improves prediction of arrhythmic events in non-ischemic cardiomyopathy patients: sub-study from the ADMIRE-HF trial. J Nucl Cardiol 20(5):813–820PubMedCrossRefGoogle Scholar
  59. 59.
    Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, Dibbets-Schneider P, Stokkel MP, van der Wall E, Schalij MJ, Bax JJ (2010) Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 55(24):2769–2777PubMedCrossRefGoogle Scholar
  60. 60.
    Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, Masuda M, Okuda K, Iwasaki Y, Yasui T, Hori M, Fukunami M (2009) Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 53(5):426–435PubMedCrossRefGoogle Scholar
  61. 61.
    Kioka H, Yamada T, Mine T, Morita T, Tsukamoto Y, Tamaki S, Masuda M, Okuda K, Hori M, Fukunami M (2007) Prediction of sudden death in patients with mild-to-moderate chronic heart failure by using cardiac iodine-123 metaiodobenzylguanidine imaging. Heart. 93(10):1213–1218PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Merlet P, Pouillart F, Dubois-Rande JL, Delahaye N, Fumey R, Castaigne A et al (1999) Sympathetic nerve alterations assessed with 123I-MIBG in the failing human heart. J Nucl Med 40(2):224–231PubMedGoogle Scholar
  63. 63.
    Towbin JA, Lorts A, Jefferies JL (2015) Left ventricular non-compaction cardiomyopathy. Lancet. 386(9995):813–825PubMedCrossRefGoogle Scholar
  64. 64.
    van Waning JI, Caliskan K, Hoedemaekers YM, van Spaendonck-Zwarts KY, Baas AF, Boekholdt SM, van Melle J, Teske AJ, Asselbergs FW, Backx APCM, du Marchie Sarvaas GJ, Dalinghaus M, Breur JMPJ, Linschoten MPM, Verlooij LA, Kardys I, Dooijes D, Lekanne Deprez RH, IJpma AS, van den Berg M, Hofstra RMW, van Slegtenhorst M, Jongbloed JDH, Majoor-Krakauer D (2018) Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol 71(7):711–722PubMedCrossRefGoogle Scholar
  65. 65.
    Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 92(4):785–789PubMedCrossRefGoogle Scholar
  66. 66.
    Authors/Task Force m, Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F et al (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779CrossRefGoogle Scholar
  67. 67.
    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW, American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery., American Society of Echocardiography., American Society of Nuclear Cardiology., Heart Failure Society of America., Heart Rhythm Society., Society for Cardiovascular Angiography and Interventions., Society of Thoracic Surgeons (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 124(24):2761–2796PubMedCrossRefGoogle Scholar
  68. 68.
    Hiemstra YL, Debonnaire P, Bootsma M, van Zwet EW, Delgado V, Schalij MJ Atsma DE, Bax JJ, Marsan NA (2017) Global longitudinal strain and left atrial volume index provide incremental prognostic value in patients with hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 10(7):e005706Google Scholar
  69. 69.
    Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, Edvardsen T, Haugaa KH (2016) Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17(6):613–621PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Candan O, Gecmen C, Bayam E, Guner A, Celik M, Dogan C (2017) Mechanical dispersion and global longitudinal strain by speckle tracking echocardiography: predictors of appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy. Echocardiography. 34(6):835–842PubMedCrossRefGoogle Scholar
  71. 71.
    Jalanko M, Tarkiainen M, Sipola P, Jaaskelainen P, Lauerma K, Laine M et al (2016) Left ventricular mechanical dispersion is associated with nonsustained ventricular tachycardia in hypertrophic cardiomyopathy. Ann Med 48(6):417–427PubMedCrossRefGoogle Scholar
  72. 72.
    Verge MP, Cochet H, Reynaud A, Morlon L, Peyrou J, Vincent C et al (2018) Characterization of hypertrophic cardiomyopathy according to global, regional, and multi-layer longitudinal strain analysis, and prediction of sudden cardiac death. Int J Cardiovasc Imaging 34(7):1091–1098PubMedCrossRefGoogle Scholar
  73. 73.
    Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, Lesser JR, Hanna CA, Udelson JE, Manning WJ, Maron MS (2008) Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 51(14):1369–1374PubMedCrossRefGoogle Scholar
  74. 74.
    Todiere G, Nugara C, Gentile G, Negri F, Bianco F, Falletta C, Novo G, di Bella G, de Caterina R, Zachara E, Re F, Clemenza F, Sinagra G, Emdin M, Aquaro GD (2019) Prognostic role of late gadolinium enhancement in patients with hypertrophic cardiomyopathy and low-to-intermediate sudden cardiac death risk score. Am J Cardiol 124(8):1286–1292PubMedCrossRefGoogle Scholar
  75. 75.
    Freitas P, Ferreira AM, Arteaga-Fernandez E, de Oliveira AM, Mesquita J, Abecasis J et al (2019) The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J Cardiovasc Magn Reson 21(1):50PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Doesch C, Tulumen E, Akin I, Rudic B, Kuschyk J, El-Battrawy I et al (2017) Incremental benefit of late gadolinium cardiac magnetic resonance imaging for risk stratification in patients with hypertrophic cardiomyopathy. Sci Rep 7(1):6336PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Maron MS, Rowin EJ, Wessler BS, Mooney PJ, Fatima A, Patel P, Koethe BC, Romashko M, Link MS, Maron BJ (2019) Enhanced American College of Cardiology/American Heart Association strategy for prevention of sudden cardiac death in high-risk patients with hypertrophic cardiomyopathy. JAMA Cardiol 4(7):644–657PubMedCrossRefGoogle Scholar
  78. 78.
    Avanesov M, Munch J, Weinrich J, Well L, Saring D, Stehning C et al (2017) Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. Eur Radiol 27(12):5136–5145PubMedCrossRefGoogle Scholar
  79. 79.
    Gommans DHF, Cramer GE, Bakker J, Dieker HJ, Michels M, Fouraux MA et al (2018) High T2-weighted signal intensity for risk prediction of sudden cardiac death in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 34(1):113–120PubMedCrossRefGoogle Scholar
  80. 80.
    Sorajja P, Chareonthaitawee P, Ommen SR, Miller TD, Hodge DO, Gibbons RJ (2006) Prognostic utility of single-photon emission computed tomography in adult patients with hypertrophic cardiomyopathy. Am Heart J 151(2):426–435PubMedCrossRefGoogle Scholar
  81. 81.
    Lu DY, Yalcin H, Yalcin F, Zhao M, Sivalokanathan S, Valenta I et al (2018) Stress myocardial blood flow heterogeneity is a positron emission tomography biomarker of ventricular arrhythmias in patients with hypertrophic cardiomyopathy. Am J Cardiol 121(9):1081–1089PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Terai H, Shimizu M, Ino H, Yamaguchi M, Hayashi K, Sakata K, Kiyama M, Hayashi T, Inoue M, Taki J, Mabuchi H (2003) Cardiac sympathetic nerve activity in patients with hypertrophic cardiomyopathy with malignant ventricular tachyarrhythmias. J Nucl Cardiol 10(3):304–310PubMedCrossRefGoogle Scholar
  83. 83.
    Davies MJ, Moore BP, Braimbridge MV (1978) The floppy mitral valve. Study of incidence, pathology, and complications in surgical, necropsy, and forensic material. Br Heart J 40(5):468–481PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Delling FN, Vasan RS (2014) Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation. 129(21):2158–2170PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Basso C, Perazzolo Marra M, Rizzo S, De Lazzari M, Giorgi B, Cipriani A et al (2015) Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation. 132(7):556–566PubMedCrossRefGoogle Scholar
  86. 86.
    Perazzolo Marra M, Basso C (2019 Jul) Mechanical dispersion and arrhythmic mitral valve prolapse: substrate and trigger in electrical instability. Heart. 105(14):1053–1054PubMedCrossRefGoogle Scholar
  87. 87.
    Bharati S, Granston AS, Liebson PR, Loeb HS, Rosen KM, Lev M (1981) The conduction system in mitral valve prolapse syndrome with sudden death. Am Heart J 101(5):667–670PubMedCrossRefGoogle Scholar
  88. 88.
    Dejgaard LA, Skjolsvik ET, Lie OH, Ribe M, Stokke MK, Hegbom F et al (2018) The mitral annulus disjunction arrhythmic syndrome. J Am Coll Cardiol 72(14):1600–1609PubMedCrossRefGoogle Scholar
  89. 89.
    Ermakov S, Gulhar R, Lim L, Bibby D, Fang Q, Nah G, Abraham TP, Schiller NB, Delling FN (2019) Left ventricular mechanical dispersion predicts arrhythmic risk in mitral valve prolapse. Heart. 105(14):1063–1069PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Basso C, Corrado D, Marcus FI, Nava A, Thiene G (2009) Arrhythmogenic right ventricular cardiomyopathy. Lancet. 373(9671):1289–1300PubMedCrossRefGoogle Scholar
  91. 91.
    Corrado D, Thiene G, Nava A, Rossi L, Pennelli N (1990) Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. Am J Med 89(5):588–596PubMedCrossRefGoogle Scholar
  92. 92.
    Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, Calkins H, Corrado D, Cox MG, Daubert JP, Fontaine G, Gear K, Hauer R, Nava A, Picard MH, Protonotarios N, Saffitz JE, Sanborn DM, Steinberg JS, Tandri H, Thiene G, Towbin JA, Tsatsopoulou A, Wichter T, Zareba W (2010 Apr) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J 31(7):806–814PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Turrini P, Angelini A, Thiene G, Buja G, Daliento L, Rizzoli G, Nava A (1999) Late potentials and ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 83(8):1214–1219PubMedCrossRefGoogle Scholar
  94. 94.
    Pinamonti B, Dragos AM, Pyxaras SA, Merlo M, Pivetta A, Barbati G et al (2011) Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results from a 10-year registry. Eur Heart J 32(9):1105–1113PubMedCrossRefGoogle Scholar
  95. 95.
    Corrado D, Leoni L, Link MS, Della Bella P, Gaita F, Curnis A, Salerno JU, Igidbashian D, Raviele A, Disertori M, Zanotto G, Verlato R, Vergara G, Delise P, Turrini P, Basso C, Naccarella F, Maddalena F, Estes NA 3rd, Buja G, Thiene G (2003) Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 108(25):3084–3091PubMedCrossRefGoogle Scholar
  96. 96.
    Lemola K, Brunckhorst C, Helfenstein U, Oechslin E, Jenni R, Duru F (2005) Predictors of adverse outcome in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy: long term experience of a tertiary care centre. Heart. 91(9):1167–1172PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Prakasa KR, Wang J, Tandri H, Dalal D, Bomma C, Chojnowski R, James C, Tichnell C, Russell S, Judge D, Corretti M, Bluemke D, Calkins H, Abraham TP (2007) Utility of tissue Doppler and strain echocardiography in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Cardiol 100(3):507–512PubMedCrossRefGoogle Scholar
  98. 98.
    Vitarelli A, Cortes Morichetti M, Capotosto L, De Cicco V, Ricci S, Caranci F et al (2013) Utility of strain echocardiography at rest and after stress testing in arrhythmogenic right ventricular dysplasia. Am J Cardiol 111(9):1344–1350PubMedCrossRefGoogle Scholar
  99. 99.
    Mast TP, Taha K, Cramer MJ, Lumens J, van der Heijden JF, Bouma BJ et al (2019) The prognostic value of right ventricular deformation imaging in early arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol Img 12(3):446–455CrossRefGoogle Scholar
  100. 100.
    Alizade E, Yesin M, Tabakci MM, Avci A, Bulut M, Acar G, Şimşek Z, Izci S, Barutçu S, Pala S (2016) Utility of speckle tracking echocardiography imaging in patients with asymptomatic and symptomatic arrhythmogenic right ventricular cardiomyopathy. Echocardiography. 33(11):1683–1688PubMedCrossRefGoogle Scholar
  101. 101.
    Sarvari SI, Haugaa KH, Anfinsen OG, Leren TP, Smiseth OA, Kongsgaard E, Amlie JP, Edvardsen T (2011) Right ventricular mechanical dispersion is related to malignant arrhythmias: a study of patients with arrhythmogenic right ventricular cardiomyopathy and subclinical right ventricular dysfunction. Eur Heart J 32(9):1089–1096PubMedCrossRefGoogle Scholar
  102. 102.
    Borgquist R, Haugaa KH, Gilljam T, Bundgaard H, Hansen J, Eschen O, Jensen HK, Holst AG, Edvardsen T, Svendsen JH, Platonov PG (2014) The diagnostic performance of imaging methods in ARVC using the 2010 Task Force criteria. Eur Heart J Cardiovasc Imaging 15(11):1219–1225PubMedCrossRefGoogle Scholar
  103. 103.
    te Riele AS, Bhonsale A, James CA, Rastegar N, Murray B, Burt JR et al (2013) Incremental value of cardiac magnetic resonance imaging in arrhythmic risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol 62(19):1761–1769CrossRefGoogle Scholar
  104. 104.
    Deac M, Alpendurada F, Fanaie F, Vimal R, Carpenter JP, Dawson A, Miller C, Roussin I, di Pietro E, Ismail TF, Roughton M, Wong J, Dawson D, Till JA, Sheppard MN, Mohiaddin RH, Kilner PJ, Pennell DJ, Prasad SK (2013) Prognostic value of cardiovascular magnetic resonance in patients with suspected arrhythmogenic right ventricular cardiomyopathy. Int J Cardiol 168(4):3514–3521PubMedCrossRefGoogle Scholar
  105. 105.
    Aquaro GD, Pingitore A, Di Bella G, Piaggi P, Gaeta R, Grigoratos C et al (2018) Prognostic role of cardiac magnetic resonance in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 122(10):1745–1753PubMedCrossRefGoogle Scholar
  106. 106.
    Le Guludec D, Gauthier H, Porcher R, Frank R, Daou D, Benelhadj S et al (2001) Prognostic value of radionuclide angiography in patients with right ventricular arrhythmias. Circulation. 103(15):1972–1976PubMedCrossRefGoogle Scholar
  107. 107.
    Mariano-Goulart D, Dechaux L, Rouzet F, Barbotte E (2007) Caderas de Kerleau C, Rossi M, et al. Diagnosis of diffuse and localized arrhythmogenic right ventricular dysplasia by gated blood-pool SPECT. J Nucl Med 48(9):1416–1423PubMedCrossRefGoogle Scholar
  108. 108.
    Lemery R, Brugada P, Janssen J, Cheriex E, Dugernier T, Wellens HJ (1989) Nonischemic sustained ventricular tachycardia: clinical outcome in 12 patients with arrhythmogenic right ventricular dysplasia. J Am Coll Cardiol 14(1):96–105PubMedCrossRefGoogle Scholar
  109. 109.
    Nava A, Canciani B, Daliento L, Miraglia G, Buja G, Fasoli G, Martini B, Scognamiglio R, Thiene G (1988) Juvenile sudden death and effort ventricular tachycardias in a family with right ventricular cardiomyopathy. Int J Cardiol 21(2):111–126PubMedCrossRefGoogle Scholar
  110. 110.
    Leclercq JF, Coumel P (1989) Characteristics, prognosis and treatment of the ventricular arrhythmias of right ventricular dysplasia. Eur Heart J 10(Suppl D):61–67PubMedCrossRefGoogle Scholar
  111. 111.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J, ADMIRE-HF Investigators (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55(20):2212–2221PubMedCrossRefGoogle Scholar
  112. 112.
    Wichter T, Hindricks G, Lerch H, Bartenstein P, Borggrefe M, Schober O, Breithardt G (1994) Regional myocardial sympathetic dysinnervation in arrhythmogenic right ventricular cardiomyopathy. An analysis using 123I-meta-iodobenzylguanidine scintigraphy. Circulation. 89(2):667–683PubMedCrossRefGoogle Scholar
  113. 113.
    Paul M, Wichter T, Kies P, Gerss J, Wollmann C, Rahbar K et al (2011) Cardiac sympathetic dysfunction in genotyped patients with arrhythmogenic right ventricular cardiomyopathy and risk of recurrent ventricular tachyarrhythmias. J Nucl Med 52(10):1559–1565PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
  2. 2.Department of University CardiologyIRCCS Policlinico San DonatoSan Donato MilaneseItaly
  3. 3.Department of CardiologyHammersmith Hospital, Imperial College Healthcare NHS TrustLondonUK
  4. 4.Department of Cardiovascular DiseasesUniversity of SienaSienaItaly

Personalised recommendations