Advertisement

Congestion occurrence and evaluation in acute heart failure scenario: time to reconsider different pathways of volume overload

  • Alberto PalazzuoliEmail author
  • Isabella Evangelista
  • Ranuccio Nuti
Article

Abstract

Although congestion is considered to be the main reason for hospital admission in patients with acute heart failure, a simplistic view considering idro saline retention and total body volume accumulation did not provide convincing data. Clinical congestion occurrence is often the tip of the iceberg of several different mechanisms ranging from increased filling pressure to extravascular fluid accumulation and blood flow redistribution. Therefore, the clinical evaluation is often restricted to a simple physical examination including few and inaccurate signs and symptoms. This superficial approach has led to contradictory data and patients have not been evaluated according to a more realistic clinical scenario. The integration with new diagnostic ultrasonographic and laboratory tools would substantially improve these weaknesses. Indeed, congestion could be assessed by following the most recognized HF subtypes including primitive cardiac defect, presence of right ventricular dysfunction, and organ perfusion. Moreover, there is a tremendous gap regarding the interchangeable concept of fluid retention and redistribution used with a univocal meaning. Overall, congestion assessment should be revised, considering it as either central, peripheral, or both. In this review, we aim to provide different evidence regarding the concept of congestion starting from the most recognized pathophysiological mechanisms of AHF decompensation. We highlight the fact that a better knowledge of congestion is a challenge for future investigation and it could lead to significant advances in HF treatment.

Keywords

Congestion Acute heart failure Echocardiography Laboratory biomarkers 

Notes

References

  1. 1.
    Gheorghiade M, Filippatos G, De Luca I, Burnett J (2006) Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med 119:S3–S10CrossRefGoogle Scholar
  2. 2.
    O’Connor CM, Stough WG, Gallup DS, Husselblad V, Gheorghiade M (2005) Demographic clinical characteristics and outcome of patients hospitalized for decompensated heart failure: observation from the IMPACT-HF registry. J Card Fail 11:200–205CrossRefGoogle Scholar
  3. 3.
    Pang P, Cleland JG, Teerlink JR, Collins SP, Lindsell CJ, Sopko G, Peacock WF, Fonarow GC, Aldeen AZ, Kirk JD, Storrow AB, Tavares M, Mebazaa A, Roland E, Massie BM, Maisel AS, Komajda M, Filippatos G, Gheorghiade M, Acute Heart Failure Syndromes International Working Group (2008) A proposal to standardize dyspnoea measurement in clinical trials of acute heart failure syndromes: the need for a uniform approach. Eur Heart J 29:816–824CrossRefGoogle Scholar
  4. 4.
    Mentz RJ, Kjeldsen K, Rossi GP, Voors AA, Cleland JG, Anker SD, Gheorghiade M, Fiuzat M, Rossignol P, Zannad F, Pitt B, O'Connor C, Felker GM (2014) Decongestion in acute heart failure. Eur J Heart Fail 16:471–482.  https://doi.org/10.1002/ejhf.74 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gheorghiade M, Follath F, Ponikowski P, Barsuk JH, Blair JE, Cleland JG, Dickstein K, Drazner MH, Fonarow GC, Jaarsma T, Jondeau G, Sendon JL, Mebazaa A, Metra M, Nieminen M, Pang PS, Seferovic P, Stevenson LW, van Veldhuisen DJ, Zannad F, Anker SD, Rhodes A, McMurray JJ, Filippatos G (2010) Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail 12:423–433.  https://doi.org/10.1093/eurjhf/hfq045 CrossRefPubMedGoogle Scholar
  6. 6.
    Danziger J, Chen K, Cavender S, Lee J, Feng M, Mark RG, Mukamal KJ, Celi LA (2016) Admission peripheral edema, central venous pressure, and survival in critically ill patients. Ann Am Thorac Soc 13:705–711.  https://doi.org/10.1513/AnnalsATS.201511-737OC CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gheorghiade M, Gattis WA, O'Connor CM, Adams KF Jr, Elkayam U, Barbagelata A, Ghali JK, Benza RL, McGrew FA, Klapholz M, Ouyang J, Orlandi C, Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Congestive Heart Failure (ACTIV in CHF) Investigators (2004) Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA 291:1963–1971CrossRefGoogle Scholar
  8. 8.
    Metra M, O'Connor CM, Davison BA, Cleland JG, Ponikowski P, Teerlink JR, Voors AA, Givertz MM, Mansoor GA, Bloomfield DM, Jia G, DeLucca P, Massie B, Dittrich H, Cotter G (2011) Early dyspnoea relief in acute heart failure: prevalence, association with mortality, and effect of rolofylline in the PROTECT study. Eur Heart J 32:1519–1534.  https://doi.org/10.1093/eurheartj/ehr042 CrossRefPubMedGoogle Scholar
  9. 9.
    Ambrosy AP, Vaduganathan M, Huffman MD, Khan S, Kwasny MJ, Fought AJ, Maggioni AP, Swedberg K, Konstam MA, Zannad F, Gheorghiade M (2012) Clinical course and predictive value of liver function tests in patients hospitalized for worsening heart failure with reduced ejection fraction: an analysis of the EVEREST trial. Eur J Heart Fail 14:302–311.  https://doi.org/10.1093/eurjhf/hfs007 CrossRefPubMedGoogle Scholar
  10. 10.
    Maggioni AP, Dahlström U, Filippatos G, Chioncel O, Leiro MC, Drozdz J, Fruhwald F, Gullestad L, Logeart D, Metra M, Parissis J, Persson H, Ponikowski P, Rauchhaus M, Voors A, Nielsen OW, Zannad F, Tavazzi L (2010) EURObservational research Programme: the heart failure pilot survey (ESC-HF pilot). Eur J Heart Fail 12:1076–1084.  https://doi.org/10.1093/eurjhf/hfq154 CrossRefPubMedGoogle Scholar
  11. 11.
    Rubio-Gracia J, Demissei BG, Ter Maaten JM, Cleland JG, O'Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Davison BA, Givertz MM, Bloomfield DM, Dittrich H, Damman K, Pérez-Calvo JI, Voors AA (2018) Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Int J Cardiol 258:185–191.  https://doi.org/10.1016/j.ijcard.2018.01.067 CrossRefPubMedGoogle Scholar
  12. 12.
    Lala A, McNulty SE, Mentz RJ, Dunlay SM, Vader JM, AbouEzzeddine OF, DeVore AD, Khazanie P, Redfield MM, Goldsmith SR, Bart BA, Anstrom KJ, Felker GM, Hernandez AF, Stevenson LW (2015) Relief and Recurrence of Congestion During and After Hospitalization for Acute Heart Failure: Insights From Diuretic Optimization Strategy Evaluation in Acute Decompensated Heart Failure (DOSE-AHF) and Cardiorenal Rescue Study in Acute Decompensated Heart Failure (CARESS-HF). Circ Heart Fail 8:741–748.  https://doi.org/10.1161/CIRCHEARTFAILURE.114.001957 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Galas A, Krzesiński P, Gielerak G, Piechota W, Uziębło-Życzkowska B, Stańczyk A, Piotrowicz K, Banak M (2018) Complex assessment of patients with decompensated heart failure: the clinical value of impedance cardiography and N-terminal pro-brain natriuretic peptide. Heart Lung S0147-9563(18):30290–30295.  https://doi.org/10.1016/j.hrtlng.2018.10.004 CrossRefGoogle Scholar
  14. 14.
    Öhman J, Harjola VP, Karjalainen P, Lassus J (2018) Focused echocardiography and lung ultrasound protocol for guiding treatment in acute heart failure. ESC Heart Fail 5:120–128.  https://doi.org/10.1002/ehf2.12208 CrossRefPubMedGoogle Scholar
  15. 15.
    Palazzuoli A, Ruocco G, Beltrami M, Nuti R, Cleland JG (2018) Combined use of lung ultrasound, B-type natriuretic peptide, and echocardiography for outcome prediction in patients with acute HFrEF and HFpEF. Clin Res Cardiol 107:586–596.  https://doi.org/10.1007/s00392-018-1221-7 CrossRefPubMedGoogle Scholar
  16. 16.
    Girerd N, Seronde MF, Coiro S, Chouihed T, Bilbault P, Braun F, Kenizou D, Maillier B, Nazeyrollas P, Roul G, Fillieux L, Abraham WT, Januzzi J Jr, Sebbag L, Zannad F, Mebazaa A, Rossignol P (2018) Integrative assessment of congestion in heart failure throughout the patient journey. JACC Heart Fail 6:273–285.  https://doi.org/10.1016/j.jchf.2017.09.023 CrossRefPubMedGoogle Scholar
  17. 17.
    Thibodeau JT, Drazner MH (2018) The role of clinical examination in patients with heart failure. JACC Heart Fail 6:543–551.  https://doi.org/10.1016/j.jchf.2018.04.005 CrossRefPubMedGoogle Scholar
  18. 18.
    Mullens W, Damman K, Harjola VP, Mebazaa A, Brunner-La Rocca HP, Martens P, Testani JM, Tang WHW, Orso F, Rossignol P, Metra M, Filippatos G, Seferovic PM, Ruschitzka F, Coats AJ (2019) The use of diuretics in heart failure with congestion - a position statement from the heart failure Association of the European Society of cardiology. Eur J Heart Fail 21:137–155.  https://doi.org/10.1002/ejhf.1369 CrossRefPubMedGoogle Scholar
  19. 19.
    Kelder JC, Cramer MJ, van Wijngaarden J, van Tooren R, Mosterd A, Moons KG, Lammers JW, Cowie MR, Grobbee DE, Hoes AW (2011) The diagnostic value of physical examination and additional testing in primary care patients with suspected heart failure. Circulation 124:2865–2873.  https://doi.org/10.1161/CIRCULATIONAHA.111.019216 CrossRefPubMedGoogle Scholar
  20. 20.
    Mahdyoon H, Klein R, Eyler W, Lakier JB, Chakko SC, Gheorghiade M (1989) Radiographic pulmonary congestion in end-stage congestive heart failure. Am J Cardiol 63:625–627CrossRefGoogle Scholar
  21. 21.
    Collins SP, Lindsell CJ, Storrow AB, Abraham WT, ADHERE Scientific Advisory Committee, Investigators and Study Group (2006) Prevalence of negative chest radiography results in the emergency department patient with decompensated heart failure. Ann Emerg Med 47:13–18CrossRefGoogle Scholar
  22. 22.
    Binanay C, Califf RM, Hasselblad V, O'Connor CM, Shah MR, Sopko G, Stevenson LW, Francis GS, Leier CV, Miller LW (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 294:1625–1633CrossRefGoogle Scholar
  23. 23.
    Ambrosy AP, Cerbin LP, Armstrong PW, Butler J, Coles A, DeVore AD, Dunlap ME, Ezekowitz JA, Felker GM, Fudim M, Greene SJ, Hernandez AF, O'Connor CM, Schulte P, Starling RC, Teerlink JR, Voors AA, Mentz R (2017) Body weight change during and after hospitalization for acute heart failure: patient characteristics, Markers of Congestion, and Outcomes: Findings From the ASCEND-HF Trial. JACC Heart Fail 5:1–13.  https://doi.org/10.1016/j.jchf.2016.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Harjola VP, Mullens W, Banaszewski M, Bauersachs J, Brunner-La Rocca HP, Chioncel O, Collins SP, Doehner W, Filippatos GS, Flammer AJ, Fuhrmann V, Lainscak M, Lassus J, Legrand M, Masip J, Mueller C, Papp Z, Parissis J, Platz E, Rudiger A, Ruschitzka F, Schäfer A, Seferovic PM, Skouri H, Yilmaz MB, Mebazaa A (2017) Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the acute heart failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 19:821–836.  https://doi.org/10.1002/ejhf.872 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Husain-Syed F, McCullough PA, Birk HW, Renker M, Brocca A, Seeger W, Ronco C (2015)Cardio-pulmonary-renal interactions: a multidisciplinary approach. J Am Coll Cardiol 65:2433–2448.  https://doi.org/10.1016/j.jacc.2015.04.024 CrossRefPubMedGoogle Scholar
  26. 26.
    Filippatos G, Zannad F (2007) An introduction to acute heart failure syndromes: definition and classification. Heart Fail Rev 12:87–90CrossRefGoogle Scholar
  27. 27.
    Chioncel O, Mebazaa A, Harjola VP, Coats AJ, Piepoli MF, Crespo-Leiro MG, Laroche C, Seferovic PM, Anker SD, Ferrari R, Ruschitzka F, Lopez-Fernandez S, Miani D, Filippatos G, Maggioni AP (2017) Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC heart failure long-term registry. Eur J Heart Fail 19:1242–1254.  https://doi.org/10.1002/ejhf.890 CrossRefPubMedGoogle Scholar
  28. 28.
    Fonarow GC, Abraham WT, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, O'Connor CM, Pieper K, Sun JL, Yancy CW, Young JB (2008) Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: findings from OPTIMIZE-HF. Arch Intern Med 168:847–854.  https://doi.org/10.1001/archinte.168.8.847 CrossRefPubMedGoogle Scholar
  29. 29.
    Sweitzer NK, Lopatin M, Yancy CW, Mills RM, Stevenson LW (2008) Comparison of clinical features and outcomes of patients hospitalized with heart failure and normal ejection fraction (> or =55%) versus those with mildly reduced (40% to 55%) and moderately to severely reduced (<40%) fractions. Am J Cardiol 101:1151–1156.  https://doi.org/10.1016/j.amjcard.2007.12.014 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ambrosy AP, Bhatt AS, Gallup D, Anstrom KJ, Butler J, DeVore AD, Felker GM, Fudim M, Greene SJ, Hernandez AF, Kelly JP, Samsky MD, Mentz RJ (2017) Trajectory of Congestion Metrics by Ejection Fraction in Patients With Acute Heart Failure (from the Heart Failure Network). Am J Cardiol 120:98–105.  https://doi.org/10.1016/j.amjcard.2017.03.249 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Van Aelst LNL, Arrigo M, Placido R, Akiyama E, Girerd N, Zannad F, Manivet P, Rossignol P, Badoz M, Sadoune M, Launay JM, Gayat E, Lam CSP, Cohen-Solal A, Mebazaa A, Seronde MF (2018) Acutely decompensated heart failure with preserved and reduced ejection fraction present with comparable haemodynamic congestion. Eur J Heart Fail 20:738–747.  https://doi.org/10.1002/ejhf.1050 CrossRefPubMedGoogle Scholar
  32. 32.
    De Luca L, Fonarow GC, Adams KF Jr, Mebazaa A, Tavazzi L, Swedberg K, Gheorghiade M (2007) Acute heart failure syndromes: clinical scenarios and pathophysiologic targets for therapy. Heart Fail Rev 12:97–104CrossRefGoogle Scholar
  33. 33.
    Horiuchi Y, Tanimoto S, Latif AHMM, Urayama KY, Aoki J, Yahagi K, Okuno T, Sato Y, Tanaka T, Koseki K, Komiyama K, Nakajima H, Hara K, Tanabe K (2018) Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables. Int J Cardiol 262:57–63.  https://doi.org/10.1016/j.ijcard.2018.03.098 CrossRefPubMedGoogle Scholar
  34. 34.
    Dwyer KH, Merz AA, Lewis EF, Claggett BL, Crousillat DR, Lau ES, Silverman MB, Peck J, Rivero J, Cheng S, Platz E (2018) Pulmonary congestion by lung ultrasound in ambulatory patients with heart failure with reduced or preserved ejection fraction and hypertension. J Card Fail 24:219–226.  https://doi.org/10.1016/j.cardfail.2018.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tromp J, Khan MAF, Mentz RJ, O'Connor CM, Metra M, Dittrich HC, Ponikowski P, Teerlink JR, Cotter G, Davison B, Cleland JGF, Givertz MM, Bloomfield DM, Van Veldhuisen DJ, Hillege HL, Voors AA, van der Meer P (2017) Biomarker profiles of acute heart failure patients with a mid-range ejection fraction. JACC Heart Fail 5:507–517.  https://doi.org/10.1016/j.jchf.2017.04.007 CrossRefPubMedGoogle Scholar
  36. 36.
    Tromp J, Westenbrink BD, Ouwerkerk W, van Veldhuisen DJ, Samani NJ, Ponikowski P, Metra M, Anker SD, Cleland JG, Dickstein K, Filippatos G, van der Harst P, Lang CC, Ng LL, Zannad F, Zwinderman AH, Hillege HL, van der Meer P, Voors AA (2018) Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 72:1081–1090.  https://doi.org/10.1016/j.jacc.2018.06.050 CrossRefPubMedGoogle Scholar
  37. 37.
    Vaduganathan M, Patel RB, Michel A, Shah SJ, Senni M, Gheorghiade M, Butler J (2017) Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol 69:556–569.  https://doi.org/10.1016/j.jacc.2016.10.078 CrossRefPubMedGoogle Scholar
  38. 38.
    Balmain S, Padmanabhan N, Ferrell WR, Morton JJ, McMurray JJ (2007) Differences in arterial compliance, microvascular function and venous capacitance between patients with heart failure and either preserved or reduced left ventricular systolic function. Eur J Heart Fail 9:865–871CrossRefGoogle Scholar
  39. 39.
    Teng TK, Tay WT, Dahlstrom U, Benson L, Lam CSP, Lund LH (2018) Different relationships between pulse pressure and mortality in heart failure with reduced, mid-range and preserved ejection fraction. Int J Cardiol 254:203–209.  https://doi.org/10.1016/j.ijcard.2017.09.187 CrossRefPubMedGoogle Scholar
  40. 40.
    Obokata M, Nagata Y, Kado Y, Kurabayashi M, Otsuji Y, Takeuchi M (2017)Ventricular-arterial coupling and exercise-induced pulmonary hypertension during low-level exercise in heart failure with preserved or reduced ejection fraction. J Card Fail 23:216–220.  https://doi.org/10.1016/j.cardfail.2016.10.001 CrossRefPubMedGoogle Scholar
  41. 41.
    Vaduganathan M, Patel RB, Michel A, Shah SJ, Senni M, Gheorghiade M, Butler J (2017) Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol 69:556–569.  https://doi.org/10.1016/j.jacc.2016.10.078 CrossRefPubMedGoogle Scholar
  42. 42.
    Lai YC, Wang L, Gladwin MT (2019) Mechanisms leading to pulmonary vascular remodelling in HFpEF, a summary of pre-clinical models of HFpEF and PH-HFpEF. J Physiol 597:1143–1156.  https://doi.org/10.1113/JP275858 CrossRefPubMedGoogle Scholar
  43. 43.
    Adir Y, Guazzi M, Offer A, Temporelli PL, Cannito A, Ghio S (2017) Pulmonary hemodynamics in heart failure patients with reduced or preserved ejection fraction and pulmonary hypertension: similarities and disparities. Am Heart J 192:120–127.  https://doi.org/10.1016/j.ahj.2017.06.006 CrossRefPubMedGoogle Scholar
  44. 44.
    Ghio S, Guazzi M, Scardovi AB, Klersy C, Clemenza F, Carluccio E, Temporelli PL, Rossi A, Faggiano P, Traversi E, Vriz O, Dini FL (2017) Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail 19:873–879.  https://doi.org/10.1002/ejhf.664 CrossRefPubMedGoogle Scholar
  45. 45.
    Bistola V, Polyzogopoulou E, Ikonomidis I, Parissis J (2018) Congestion in acute heart failure with reduced vs. preserved left ventricular ejection fraction: differences, similarities and remaining gaps. Eur J Heart Fail 20:748–750.  https://doi.org/10.1002/ejhf.1115 CrossRefPubMedGoogle Scholar
  46. 46.
    Cotter G, Felker MG, Kirkwood AF, Milo-Cotter O, O’Connor CM (2008) The pathophysiology of acute heart failure. It is all about fluid accumulation? Am Heart J 155:9–18CrossRefGoogle Scholar
  47. 47.
    Kemp CD, Conte JV (2012) The pathophysiology of heart failure. Cardiovasc Pathol 21:365–371.  https://doi.org/10.1016/j.carpath.2011.11.007 CrossRefPubMedGoogle Scholar
  48. 48.
    Vagnarelli F, Corsini A, Lorenzini M, Pacini D, Ferlito M, Bacchi Reggiani L, Longhi S, Nanni S, Norscini G, Cinti L, Bugani G, Pasquale F, Biagini E, Grigioni F, Di Bartolomeo R, Marini M, Perna GP, Melandri G, Rapezzi C (2015) Acute heart failure in patients with acute aortic syndrome: pathophysiology and clinical-prognostic implications. Eur J Heart Fail 17:917–924.  https://doi.org/10.1002/ejhf.325 CrossRefPubMedGoogle Scholar
  49. 49.
    Mentz RJ, O'Connor CM (2016) Pathophysiology and clinical evaluation of acute heart failure. Nat Rev Cardiol 13:28–35.  https://doi.org/10.1038/nrcardio.2015.134 CrossRefPubMedGoogle Scholar
  50. 50.
    Miller WR (2016) Fluid volume overload and congestion in heart failure time to reconsider pathophysiology and how volume is assessed. Circ Heart Fail 9:e002922.  https://doi.org/10.1161/CIRCHEARTFAILURE.115.002922 CrossRefPubMedGoogle Scholar
  51. 51.
    Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM (2013) Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 62:D22–D33CrossRefGoogle Scholar
  52. 52.
    Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA (2014) Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 35:3452–3462CrossRefGoogle Scholar
  53. 53.
    Dixon DD, Trivedi A, Shah SJ (2016) Combined post- and pre-capillary pulmonary hypertension in heart failure with preserved ejection fraction. Heart Fail Rev 21:285–297.  https://doi.org/10.1007/s10741-015-9523-6 CrossRefPubMedGoogle Scholar
  54. 54.
    Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW, Suzuki YJ, Gladwin M, Denholm EM, Gail DB, National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 114:1883–1891CrossRefGoogle Scholar
  55. 55.
    Brewster UC, Setaro JF, Perazella MA (2003) The renin angiotensin-aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci 326:15–24CrossRefGoogle Scholar
  56. 56.
    Sinkeler SJ, Damman K, van Veldhuisen DJ, Hillege H, Navis G (2012) A reappraisal of volume status and renal function impairment in chronic heart failure: combined effect of pre renal failure and venous congestion on renal function. Heart Fail Rev 17:263–270CrossRefGoogle Scholar
  57. 57.
    Palazzuoli A, Ruocco G (2018)Heart-kidney interactions in Cardiorenal syndrome type 1. Adv Chronic Kidney Dis 25:408–417.  https://doi.org/10.1053/j.ackd.2018.08.013 CrossRefPubMedGoogle Scholar
  58. 58.
    Birch DJ, Turmaine M, Boulos PB, Burnstock G (2008) Sympathetic innervation of human mesenteric artery and vein. J Vasc Res 45:323–332CrossRefGoogle Scholar
  59. 59.
    Fallick C, Sobotka PA, Dunlap ME (2011) Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail 4:669–675.  https://doi.org/10.1161/CIRCHEARTFAILURE.111.961789 CrossRefPubMedGoogle Scholar
  60. 60.
    Nohria A, Hasselblad V, Stebbins A, Pauly DF, Fonarow GC, Shah M, Yancy CW, Califf RM, Stevenson LW, Hill JA (2008) Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol 51:1268–1274CrossRefGoogle Scholar
  61. 61.
    Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, Piovanelli B, Carubelli V, Bugatti S, Lombardi C, Cotter G, Dei Cas L (2012) Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail 5:54–62CrossRefGoogle Scholar
  62. 62.
    Miller WL, Mullan BP (2014) Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation. JACC Heart Fail 2:298–305CrossRefGoogle Scholar
  63. 63.
    Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326.  https://doi.org/10.1113/jphysiol.1896.sp000596 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC (1989) Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation. 80:299–305.  https://doi.org/10.1161/01.CIR.80.2.299 CrossRefPubMedGoogle Scholar
  65. 65.
    Nijst P, Verbrugge FH, Grieten L, Dupont M, Steels P, Tang WHW, Mullens W (2015) The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol 65:378–388.  https://doi.org/10.1016/j.jacc.2014.11.025 CrossRefPubMedGoogle Scholar
  66. 66.
    Mullens W, Verbrugge FH, Nijst P, Tang WHW (2017) Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J 38:1872–1882.  https://doi.org/10.1093/eurheartj/ehx035 CrossRefPubMedGoogle Scholar
  67. 67.
    Tarbell JM, Pahakis MY (2006) Mechano transduction and the glycocalyx. J Intern Med 259:339–350CrossRefGoogle Scholar
  68. 68.
    Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, Oberleithner K (2011) Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch 462:519–528CrossRefGoogle Scholar
  69. 69.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(2015):233–270CrossRefGoogle Scholar
  70. 70.
    Mercurio V, Palazzuoli A, Correale M, Lombardi C, Passantino A, Ravera A, Ruocco G, Sciatti E, Triggiani M, Lagioia R, Scrutinio D, Tocchetti CG, Nodari S (2018) Right heart dysfunction: from pathophysiologic insights to therapeutic options: a translational overview. J Cardiovasc Med (Hagerstown) 19:613–623.  https://doi.org/10.2459/JCM.0000000000000700 CrossRefGoogle Scholar
  71. 71.
    Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ et al (2013) Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 62(25 Suppl):D22–D33CrossRefGoogle Scholar
  72. 72.
    Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ (2003) A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 41(6):1021–1027CrossRefGoogle Scholar
  73. 73.
    Gargani L, Frassi F, Soldati G, Tesorio P, Gheorghiade M, Picano E (2008) Ultrasound lung comets for the differential diagnosis of acute cardiogenic dyspnoea: a comparison with natriuretic peptides. Eur J Heart Fail 10:70–77CrossRefGoogle Scholar
  74. 74.
    Platz E, Lewis EF, Uno H, Peck J, Pivetta E, Merz AA, Hempel D, Wilson C, Frasure SE, Jhund PS, Cheng S, Solomon SD (2016) Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients. Eur Heart J 37:1244–1251CrossRefGoogle Scholar
  75. 75.
    Cogliati C, Casazza G, Ceriani E, Torzillo D, Furlotti S, Bossi I, Vago T, Costantino G, Montano N (2016) Lung ultrasound and short-term prognosis in heart failure patients. Int J Cardiol 218:104–108CrossRefGoogle Scholar
  76. 76.
    Coiro S, Rossignol P, Ambrosio G, Carluccio E, Alunni G, Murrone A, Tritto I, Zannad F, Girerd N (2015) Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur J Heart Fail 17:1172–1181CrossRefGoogle Scholar
  77. 77.
    Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, Picano E (2004) Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol 93:1265–1270CrossRefGoogle Scholar
  78. 78.
    Mueller T, Gegenhuber A, Poelz W, Haltmayer M (2005) Diagnostic accuracy of B type natriuretic peptide and amino terminal proBNP in the emergency diagnosis of heart failure. Heart. 91:606–612CrossRefGoogle Scholar
  79. 79.
    Palazzuoli A, Beltrami M, Ruocco G, Franci B, Campagna MS, Nuti R (2016) Diagnostic utility of contemporary echo and BNP assessment in patients with acute heart failure during early hospitalization. Eur J Intern Med 30:43–48.  https://doi.org/10.1016/j.ejim.2015.11.031 CrossRefPubMedGoogle Scholar
  80. 80.
    Chen AA, Wood MJ, Krauser DG, Baggish AL, Tung R, Anwaruddin S, Ianuzzi J (2006)NT-proBNP levels, echocardiographic findings, and outcomes in breathless patients: results from the ProBNP investigation of Dyspnoea in the emergency department (PRIDE) echocardiographic substudy. Eur Heart J 27:839–845CrossRefGoogle Scholar
  81. 81.
    Kociol RD, Horton JR, Fonarow GC, Reyes EM, Shaw LK, O'Connor CM, Felker GM, Hernandez AF (2011) Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF) linked to Medicare claims. Circ Heart Fail 4:628–636.  https://doi.org/10.1161/CIRCHEARTFAILURE.111.962290 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Savarese G, Musella F, D'Amore C, Vassallo E, Losco T, Gambardella F, Cecere M, Petraglia L, Pagano G, Fimiani L, Rengo G, Leosco D, Trimarco B, Perrone-Filardi P (2014) Changes of natriuretic peptides predict hospital admissions in patients with chronic heart failure: a meta-analysis. JACC Heart Fail 2:148–158.  https://doi.org/10.1016/j.jchf.2013.11.007 CrossRefPubMedGoogle Scholar
  83. 83.
    Kato TS, Collado E, Khawaja T, Kawano Y, Kim M, Farr M, Mancini DM, Schulze PC (2013) Value of peak exercise oxygen consumption combined with B-type natriuretic peptide levels for optimal timing of cardiac transplantation. Circ Heart Fail 6:6–14.  https://doi.org/10.1161/CIRCHEARTFAILURE.112.968123 CrossRefPubMedGoogle Scholar
  84. 84.
    Sanders-van Wijk S, Maeder MT, Nietlispach F, Rickli H, Estlinbaum W, Erne P, Rickenbacher P, Peter M, Pfisterer MP, Brunner-La Rocca HP (2014)Long-term results of intensified, N-terminal-pro-B-type natriuretic peptide-guided versus symptom-guided treatment in elderly patients with heart failure: five-year follow-up from TIME-CHF. Circ Heart Fail 7:131–139.  https://doi.org/10.1161/CIRCHEARTFAILURE.113.000527 CrossRefPubMedGoogle Scholar
  85. 85.
    Felker GM, Anstrom KJ, Adams KF, Ezekowitz JA, Fiuzat M, Houston-Miller N, Januzzi JL Jr, Mark DB, Piña IL, Passmore G, Whellan DJ, Yang H, Cooper LS, Leifer ES, Desvigne-Nickens P, O'Connor CM (2017) Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 318:713–720.  https://doi.org/10.1001/jama.2017.10565 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kubánek M, Goode KM, Lánská V, Clark AL, Cleland JG (2009) The prognostic value of repeated measurement of N-terminalpro-B-type natriuretic peptide in patients with chronic heart failure due to left ventricular systolic dysfunction. Eur J Heart Fail 11:367–377CrossRefGoogle Scholar
  87. 87.
    Gaggin HK, Truong QA, Rehman SU, Mohammed AA, Bhardwaj A, Parks KA, Sullivan DA, Chen-Tournoux A, Moore SA, Richards AM, Troughton RW, Lainchbury JG, Weiner RB, Baggish AL, Semigran MJ, Januzzi JL (2013) Characterization and prediction of natriuretic peptide "nonresponse" during heart failure management: results from the ProBNP Outpatient Tailored Chronic Heart Failure (PROTECT) and the NT-proBNP-Assisted Treatment to Lessen Serial Cardiac Readmissions and Death (BATTLESCARRED) study. Congest Heart Fail 19:135–142CrossRefGoogle Scholar
  88. 88.
    Kremer D, Ter Maaten JM, Voors AA (2018)Bio-adrenomedullin as a potential quick, reliable, and objective marker of congestion in heart failure. Eur J Heart Fail 20:1363–1365.  https://doi.org/10.1002/ejhf.1245 CrossRefPubMedGoogle Scholar
  89. 89.
    Morbach C, Marx A, Kaspar M, Güder G, Brenner S, Feldmann C, Störk S, Vollert JO, Ertl G, Angermann CE (2017) Prognostic potential of midregional pro-adrenomedullin following decompensation for systolic heart failure: comparison with cardiac natriuretic peptides. Eur J Heart Fail 19:1166–1175.  https://doi.org/10.1002/ejhf.859 CrossRefPubMedGoogle Scholar
  90. 90.
    Matson BC, Corty RW, Karpinich NO, Murtha AP, Valdar W, Grotegut CA, Caron KM (2014) Midregional pro-adrenomedullin plasma concentrations are blunted in severe preeclampsia. Placenta. 35:780–783.  https://doi.org/10.1016/j.placenta.2014.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Möckel M, Searle J, Hartmann O, Anker SD, Peacock WF, Wu AH, Maisel A, BACH Writing group (2013)Mid-regional pro-adrenomedullin improves disposition strategies for patients with acute dyspnoea: results from the BACH trial. Emerg Med J 30:633–637.  https://doi.org/10.1136/emermed-2012-201530 CrossRefPubMedGoogle Scholar
  92. 92.
    Greene SJ, Gheorghiade M, Vaduganathan M, Ambrosy AP, Mentz RJ, Subacius H, Maggioni AP, Nodari S, Konstam MA, Butler J, Filippatos G (2013) Haemoconcentration, renal function, and post-discharge outcomes among patients hospitalized for heart failure with reduced ejection fraction: insights from the EVEREST trial. Eur J Heart Fail 15:1401–1411.  https://doi.org/10.1093/eurjhf/hft110 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    van der Meer P, Postmus D, Ponikowski P, Cleland JG, O'Connor CM, Cotter G, Metra M, Davison BA, Givertz MM, Mansoor GA, Teerlink JR, Massie BM, Hillege HL, Voors AA (2013) The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol 61:1973–1981.  https://doi.org/10.1016/j.jacc.2012.12.050 CrossRefPubMedGoogle Scholar
  94. 94.
    Breidthardt T, Weidmann ZM, Twerenbold R, Gantenbein C, Stallone F, Rentsch K, Rubini Gimenez M, Kozhuharov N, Sabti Z, Breitenbücher D, Wildi K, Puelacher C, Honegger U, Wagener M, Schumacher C, Hillinger P, Osswald S, Mueller C (2017) Impact of haemoconcentration during acute heart failure therapy on mortality and its relationship with worsening renal function. Eur J Heart Fail 19:226–236.  https://doi.org/10.1002/ejhf.667 CrossRefPubMedGoogle Scholar
  95. 95.
    D'Aloia A, Vizzardi E, Metra M (2016) Can carbohydrate Antigen-125 be a new biomarker to Guide heart failure treatment?: the CHANCE-HF trial. JACC Heart Fail 4:844–846.  https://doi.org/10.1016/j.jchf.2016.09.001 CrossRefPubMedGoogle Scholar
  96. 96.
    Núñez J, Núñez E, Bayés-Genís A, Fonarow GC, Miñana G, Bodí V, Pascual-Figal D, Santas E, Garcia-Blas S, Chorro FJ, Rizopoulos D, Sanchis J (2017)Long-term serial kinetics of N-terminal pro B-type natriuretic peptide and carbohydrate antigen 125 for mortality risk prediction following acute heart failure. Eur Heart J Acute Cardiovasc Care 6:685–696.  https://doi.org/10.1177/2048872616649757 CrossRefPubMedGoogle Scholar
  97. 97.
    Huang F, Zhang K, Chen J, Cai Q, Liu X, Wang T, Lv Z, Wang J, Huang H (2013) Elevation of carbohydrate antigen 125 in chronic heart failure may be caused by mechanical extension of mesothelial cells from serous cavity effusion. Clin Biochem 46:1694–1700.  https://doi.org/10.1016/j.clinbiochem.2013.09.008 CrossRefPubMedGoogle Scholar
  98. 98.
    Núñez J, Miñana G, Núñez E, Chorro FJ, Bodí V, Sanchis J (2014) Clinical utility of antigen carbohydrate 125 in heart failure. Heart Fail Rev 19:575–584.  https://doi.org/10.1007/s10741-013-9402-y CrossRefPubMedGoogle Scholar
  99. 99.
    Kaya H, Yücel O, Ege MR, Zorlu A, Yücel H, Güneş H, Ekmekçi A, Yılmaz MB (2017) Plasma osmolality predicts mortality in patients with heart failure with reduced ejection fraction. Kardiol Pol 75:316–322.  https://doi.org/10.5603/KP.a2016.0168 CrossRefPubMedGoogle Scholar
  100. 100.
    Vaduganathan M, Goldsmith SR, Senni M, Butler J, Gheorghiade M (2016) Contrasting acute and chronic effects of tolvaptan on serum osmolality in the EVEREST trial. Eur J Heart Fail 18:185–191.  https://doi.org/10.1002/ejhf.415 CrossRefPubMedGoogle Scholar
  101. 101.
    Pellicori P, Shah P, Cuthbert J, Urbinati A, Zhang J, Kallvikbacka-Bennett A, Clark AL, Cleland JGF (2019) Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur J Heart Fail.  https://doi.org/10.1002/ejhf.1383 CrossRefGoogle Scholar
  102. 102.
    Aimo A, Vergaro G, Giannoni A, Emdin M (2018) Wet is bad: residual congestion predicts worse prognosis in acute heart failure. Int J Cardiol 258:201–202.  https://doi.org/10.1016/j.ijcard.2018.02.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cardiovascular Diseases Unit, Department of Internal Medicine, S. Maria alle Scotte HospitalUniversity of SienaSienaItaly

Personalised recommendations