Exercise testing for assessment of heart failure in adults with congenital heart disease

  • Danielle S. BursteinEmail author
  • Jonathan N. Menachem
  • Alexander R. Opotowsky


Congenital heart disease (CHD)–related heart failure is common and associated with significant morbidity, mortality, and resource utilization. In adults with CHD (ACHD), exercise limitation is often underestimated. Quantitative assessment with cardiopulmonary exercise testing (CPET) provides a comprehensive evaluation of exercise capacity and can help risk stratify patients, particularly across serial testing. CPET parameters must be interpreted within the context of the underlying anatomy, specifically for patients with either single ventricle physiology and/or cyanosis. Acknowledging differences in CPET parameters between ACHD and non-ACHD patients with heart failure are also important considerations when evaluating the overall benefit of advanced heart failure therapies. CPET testing can also guide safe exercise recommendation, including those with ACHD-related heart failure.


Adult congenital heart disease Heart failure Exercise testing 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Verheugt CL et al (2008) Long-term prognosis of congenital heart defects: a systematic review. Int J Cardiol. 131(1):25–32PubMedCrossRefGoogle Scholar
  2. 2.
    Khairy P et al (2010) Changing mortality in congenital heart disease. J Am Coll Cardiol. 56(14):1149–1157PubMedCrossRefGoogle Scholar
  3. 3.
    Gilboa SM et al (2016) Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation. 134(2):101–109PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Burstein DS et al (2017) Hospitilization-related resource utilization in congenital heart disease with advanced heart failure. J Heart Lung Transplant. 36(4S):S262CrossRefGoogle Scholar
  5. 5.
    Burchill LJ et al (2018) Hospitalization trends and health resource use for adult congenital heart disease-related heart failure. J Am Heart Assoc. 7(15):e008775PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Norozi K et al (2006) Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am J Cardiol. 97(8):1238–1243PubMedCrossRefGoogle Scholar
  7. 7.
    Opotowsky AR, Siddiqi OK, Webb GD (2009) Trends in hospitalizations for adults with congenital heart disease in the U.S. J Am Coll Cardiol. 54(5):460–467PubMedCrossRefGoogle Scholar
  8. 8.
    Diller GP et al (2005) Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation. 112(6):828–835PubMedCrossRefGoogle Scholar
  9. 9.
    Inuzuka R et al (2012) Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation. 125(2):250–259PubMedCrossRefGoogle Scholar
  10. 10.
    Khan AM, Paridon SM, Kim YY (2014) Cardiopulmonary exercise testing in adults with congenital heart disease. Expert Rev Cardiovasc Ther. 12(7):863–872PubMedCrossRefGoogle Scholar
  11. 11.
    Das BB et al (2019) Relation between New York Heart Association Functional class and objective measures of cardiopulmonary exercise in adults with congenital heart disease. Am J Cardiol. 123(11):1868–1873PubMedCrossRefGoogle Scholar
  12. 12.
    Menachem JN et al (2019) Cardiopulmonary exercise testing-a valuable tool, not gatekeeper when referring patients with adult congenital heart disease for transplant evaluation. World J Pediatr Congenit Heart Surg. 10(3):286–291PubMedCrossRefGoogle Scholar
  13. 13.
    Malhotra R et al (2016) Cardiopulmonary exercise testing in heart failure. JACC Heart Fail. 4(8):607–616PubMedCrossRefGoogle Scholar
  14. 14.
    Mancini DM et al (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 83(3):778–786PubMedCrossRefGoogle Scholar
  15. 15.
    Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema EK, Sun X, Whipp B (2012) Exercise testing and interpretation, in principles of exercise testing and interpretation. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  16. 16.
    Rosenthal M et al (1995) Comparison of cardiopulmonary adaptation during exercise in children after the atriopulmonary and total cavopulmonary connection Fontan procedures. Circulation. 91(2):372–378PubMedCrossRefGoogle Scholar
  17. 17.
    Marma AK et al (2016) Noninvasive cardiac output estimation by inert gas rebreathing in pediatric and congenital heart disease. Am Heart J. 174:80–88PubMedCrossRefGoogle Scholar
  18. 18.
    Opotowsky AR et al (2014) Inadequate venous return as a primary cause for Fontan circulatory limitation. J Heart Lung Transplant. 33(11):1194–1196PubMedCrossRefGoogle Scholar
  19. 19.
    Berry NC et al (2015) Protocol for exercise hemodynamic assessment: performing an invasive cardiopulmonary exercise test in clinical practice. Pulm Circ. 5(4):610–618PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Balady GJ et al (2010) Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 122(2):191–225PubMedCrossRefGoogle Scholar
  21. 21.
    Miyamura M, Honda Y (1972) Oxygen intake and cardiac output during maximal treadmill and bicycle exercise. J Appl Physiol. 32(2):185–188PubMedCrossRefGoogle Scholar
  22. 22.
    Kempny A et al (2012) Reference values for exercise limitations among adults with congenital heart disease. Relation to activities of daily life--single centre experience and review of published data. Eur Heart J. 33(11):1386–1396PubMedCrossRefGoogle Scholar
  23. 23.
    Norozi K et al (2007) Chronotropic incompetence in adolescents and adults with congenital heart disease after cardiac surgery. J Card Fail. 13(4):263–268PubMedCrossRefGoogle Scholar
  24. 24.
    Cole CR et al (1999) Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 341(18):1351–1357PubMedCrossRefGoogle Scholar
  25. 25.
    Qiu S et al (2017) Heart rate recovery and risk of cardiovascular events and all-cause mortality: a meta-analysis of prospective cohort studies. J Am Heart Assoc. 6(5)Google Scholar
  26. 26.
    Lentner C (1990) Geigy scientific tables: heart and circulation. Ciba-GeigyGoogle Scholar
  27. 27.
    Alonso-Gonzalez R et al (2013) Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation. 127(8):882–890PubMedCrossRefGoogle Scholar
  28. 28.
    Guenette JA et al (2019) Ventilatory and sensory responses to incremental exercise in adults with a Fontan circulation. Am J Physiol Heart Circ Physiol. 316(2):H335–H344PubMedCrossRefGoogle Scholar
  29. 29.
    Francis DP et al (2000) Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2)slope and peak VO(2). Eur Heart J. 21(2):154–161PubMedCrossRefGoogle Scholar
  30. 30.
    Ponikowski P et al (2001) Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation. 103(7):967–972PubMedCrossRefGoogle Scholar
  31. 31.
    Dimopoulos K et al (2006) Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation. 113(24):2796–2802PubMedCrossRefGoogle Scholar
  32. 32.
    Stout KK et al (2016) Chronic heart failure in congenital heart disease: a scientific statement from the American Heart Association. Circulation. 133(8):770–801PubMedCrossRefGoogle Scholar
  33. 33.
    Gratz A, Hess J, Hager A (2009) Self-estimated physical functioning poorly predicts actual exercise capacity in adolescents and adults with congenital heart disease. Eur Heart J. 30(4):497–504PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ohuchi H et al (2019) Positive pediatric exercise capacity trajectory predicts better adult Fontan physiology rationale for early establishment of exercise habits. Int J Cardiol. 274:80–87PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Cunningham JW et al (2017) Decline in peak oxygen consumption over time predicts death or transplantation in adults with a Fontan circulation. Am Heart J. 189:184–192PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Giardini A et al (2007) Usefulness of cardiopulmonary exercise to predict long-term prognosis in adults with repaired tetralogy of Fallot. Am J Cardiol. 99(10):1462–1467PubMedCrossRefGoogle Scholar
  37. 37.
    Rhodes J et al (1990) Effect of right ventricular anatomy on the cardiopulmonary response to exercise. Implications for the Fontan procedure. Circulation. 81(6):1811–1817PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Diller GP et al (2006) Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol. 48(6):1250–1256PubMedCrossRefGoogle Scholar
  39. 39.
    Diller GP et al (2010) Predictors of morbidity and mortality in contemporary Fontan patients: results from a multicenter study including cardiopulmonary exercise testing in 321 patients. Eur Heart J. 31(24):3073–3083PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Sietsema KE et al (1986) Dynamics of oxygen uptake during exercise in adults with cyanotic congenital heart disease. Circulation. 73(6):1137–1144PubMedCrossRefGoogle Scholar
  41. 41.
    Nathan AS et al (2015) Exercise oscillatory ventilation in patients with Fontan physiology. Circ Heart Fail. 8(2):304–311PubMedCrossRefGoogle Scholar
  42. 42.
    Yancy CW et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 62(16):e147–e239PubMedCrossRefGoogle Scholar
  43. 43.
    Ritt LE et al (2015) Additive prognostic value of a cardiopulmonary exercise test score in patients with heart failure and intermediate risk. Int J Cardiol. 178:262–264PubMedCrossRefGoogle Scholar
  44. 44.
    O'Neill JO et al (2005) Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta-blockers. Circulation. 111(18):2313–2318PubMedCrossRefGoogle Scholar
  45. 45.
    Arena R et al (2009) Determining the preferred percent-predicted equation for peak oxygen consumption in patients with heart failure. Circ Heart Fail. 2(2):113–120PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gitt AK et al (2002) Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 106(24):3079–3084PubMedCrossRefGoogle Scholar
  47. 47.
    Tanabe Y et al (2002) Hemodynamic basis of the reduced oxygen uptake relative to work rate during incremental exercise in patients with chronic heart failure. Int J Cardiol. 83(1):57–62PubMedCrossRefGoogle Scholar
  48. 48.
    Swank AM et al (2012) Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail. 5(5):579–585PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Arena R et al (2007) Development of a ventilatory classification system in patients with heart failure. Circulation. 115(18):2410–2417PubMedCrossRefGoogle Scholar
  50. 50.
    Jaussaud J, Aimable L, Douard H (2011) The time for a new strong functional parameter in heart failure: the VE/VCO2 slope. Int J Cardiol. 147(2):189–190PubMedCrossRefGoogle Scholar
  51. 51.
    Osada N et al (1998) Cardiopulmonary exercise testing identifies low risk patients with heart failure and severely impaired exercise capacity considered for heart transplantation. J Am Coll Cardiol. 31(3):577–582PubMedCrossRefGoogle Scholar
  52. 52.
    Myers J et al (2008) A cardiopulmonary exercise testing score for predicting outcomes in patients with heart failure. Am Heart J. 156(6):1177–1183PubMedCrossRefGoogle Scholar
  53. 53.
    Righini FM et al (2019) Exercise physiology in pulmonary hypertension patients with and without congenital heart disease. Eur J Prev Cardiol. 26(1):86–93PubMedCrossRefGoogle Scholar
  54. 54.
    Stout KK et al (2019) 2018 AHA/ACC Guideline for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 139(14):e637–e697PubMedGoogle Scholar
  55. 55.
    O'Connor CM et al (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 301(14):1439–1450PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Dua JS et al (2010) Exercise training in adults with congenital heart disease: feasibility and benefits. Int J Cardiol. 138(2):196–205PubMedCrossRefGoogle Scholar
  57. 57.
    van Dissel AC et al (2019) Safety and effectiveness of home-based, self-selected exercise training in symptomatic adults with congenital heart disease: a prospective, randomised, controlled trial. Int J Cardiol. 278:59–64PubMedCrossRefGoogle Scholar
  58. 58.
    McBride MG, Binder TJ, Paridon SM (2007) Safety and feasibility of inpatient exercise training in pediatric heart failure: a preliminary report. J Cardiopulm Rehabil Prev. 27(4):219–222PubMedCrossRefGoogle Scholar
  59. 59.
    Li X et al (2019) Exercise training in adults with congenital heart disease: a systematic review and meta-analysis. J Cardiopulm Rehabil Prev.Google Scholar
  60. 60.
    Cordina R, Celermajer DS, d'Udekem Y (2018) Lower limb exercise generates pulsatile flow into the pulmonary vascular bed in the setting of the Fontan circulation. Cardiol Young. 28(5):732–733PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of CardiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Division of CardiologyVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of CardiologyBoston Children’s HospitalBostonUSA
  4. 4.Department of MedicineBrigham and Women’s HospitalBostonUSA

Personalised recommendations