Circulating galectin-3 on admission and prognosis in acute heart failure patients: a meta-analysis

  • Hongsen ChenEmail author
  • Chensong Chen
  • Junjie Fang
  • Ren Wang
  • Wanshui Nie


Changes of serum galectin-3 have been associated with the pathogenesis of many cardiovascular diseases. The aim of the study was to evaluate the prognostic role of serum galectin-3 in patients with acute heart failure (AHF) in a meta-analysis. Follow-up studies evaluating the association between serum galectin-3 on admission and clinical outcomes in AHF patients were identified via search of PubMed and Embase databases. A random effects or a fixed effects model was applied to pool the results depending on the heterogeneity. Subgroup analysis was used to evaluate the influences of study characteristics on the outcomes. Overall, 7057 AHF patients from eighteen follow-up studies were included. Higher serum galectin-3 was associated with higher risks of all-cause mortality (adjusted risk ratio [RR], 1.58; p < 0.001), mortality/HF rehospitalization (RR, 1.68; p < 0.001), and cardiovascular mortality (RR, 1.29; p = 0.04), but not HF rehospitalization (RR, 1.24; p = 0.25) in AHF patients. Subgroup analyses showed that study characteristics including study design, sample size, age, gender, left ventricular ejection fraction, galectin-3 variable type, follow-up duration, and adjustment of type B natriuretic peptide did not significantly impact the results. Significant heterogeneities were detected for the outcomes of all-cause mortality and mortality/HF rehospitalization. However, trim-and-fill analyses by including the imputed studies to generate symmetrical funnel plots showed similar significant meta-analysis results. These results suggested that higher serum galectin-3 may be associated with poor prognosis in AHF patients. Further studies are needed to determine the mechanisms underlying the potential prognostic role of galectin-3 in AHF.


Galectin-3 Acute heart failure Mortality Rehospitalization Meta-analysis 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS (2019) Heart Disease and Stroke Statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528. CrossRefPubMedGoogle Scholar
  2. 2.
    Sinnenberg L, Givertz MM (2019) Acute heart failure. Trends Cardiovasc Med.
  3. 3.
    van der Meer P, Gaggin HK, Dec GW (2019) ACC/AHA versus ESC guidelines on heart failure: JACC Guideline Comparison. J Am Coll Cardiol 73(21):2756–2768. CrossRefPubMedGoogle Scholar
  4. 4.
    Michaud AM, Parker SIA, Ganshorn H, Ezekowitz JA, McRae AD (2018) Prediction of early adverse events in emergency department patients with acute heart failure: a systematic review. Can J Cardiol 34(2):168–179. CrossRefPubMedGoogle Scholar
  5. 5.
    Tanaka TD, Sawano M, Ramani R, Friedman M, Kohsaka S (2018) Acute heart failure management in the USA and Japan: overview of practice patterns and review of evidence. ESC Heart Fail 5(5):931–947. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rigopoulos AG, Bakogiannis C, de Vecchis R, Sakellaropoulos S, Ali M, Teren M, Matiakis M, Tschoepe C, Noutsias M (2019) Acute heart failure : an unmet medical need. Herz 44(1):53–55. CrossRefPubMedGoogle Scholar
  7. 7.
    Gehlken C, Suthahar N, Meijers WC, de Boer RA (2018) Galectin-3 in heart failure: an update of the last 3 years. Heart Fail Clin 14(1):75–92. CrossRefPubMedGoogle Scholar
  8. 8.
    Zhong X, Qian X, Chen G, Song X (2019) The role of galectin-3 in heart failure and cardiovascular disease. Clin Exp Pharmacol Physiol 46(3):197–203. CrossRefPubMedGoogle Scholar
  9. 9.
    Chen A, Hou W, Zhang Y, Chen Y, He B (2015) Prognostic value of serum galectin-3 in patients with heart failure: a meta-analysis. Int J Cardiol 182:168–170. CrossRefPubMedGoogle Scholar
  10. 10.
    Imran TF, Shin HJ, Mathenge N, Wang F, Kim B, Joseph J, Gaziano JM, Djousse L (2017) Meta-analysis of the usefulness of plasma galectin-3 to predict the risk of mortality in patients with heart failure and in the general population. Am J Cardiol 119(1):57–64. CrossRefPubMedGoogle Scholar
  11. 11.
    van Kimmenade RR, Januzzi JL Jr, Ellinor PT, Sharma UC, Bakker JA, Low AF, Martinez A, Crijns HJ, MacRae CA, Menheere PP, Pinto YM (2006) Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 48(6):1217–1224. CrossRefPubMedGoogle Scholar
  12. 12.
    de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, van Veldhuisen DJ (2011) Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 43(1):60–68. CrossRefPubMedGoogle Scholar
  13. 13.
    Carrasco-Sanchez FJ, Aramburu-Bodas O, Salamanca-Bautista P, Morales-Rull JL, Galisteo-Almeda L, Paez-Rubio MI, Arias-Jimenez JL, Aguayo-Canela M, Perez-Calvo JI (2013) Predictive value of serum galectin-3 levels in patients with acute heart failure with preserved ejection fraction. Int J Cardiol 169(3):177–182. CrossRefPubMedGoogle Scholar
  14. 14.
    van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, Muntendam P, van Veldhuisen DJ, de Boer RA (2013) Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail 6(2):219–226. CrossRefPubMedGoogle Scholar
  15. 15.
    Meijers WC, de Boer RA, van Veldhuisen DJ, Jaarsma T, Hillege HL, Maisel AS, Di Somma S, Voors AA, Peacock WF (2015) Biomarkers and low risk in heart failure. Data from COACH and TRIUMPH. Eur J Heart Fail 17(12):1271–1282. CrossRefPubMedGoogle Scholar
  16. 16.
    Nunez J, Rabinovich GA, Sandino J, Mainar L, Palau P, Santas E, Villanueva MP, Nunez E, Bodi V, Chorro FJ, Minana G, Sanchis J (2015) Prognostic value of the interaction between galectin-3 and antigen carbohydrate 125 in acute heart failure. PLoS One 10(4):e0122360. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Behnes M, Bertsch T, Weiss C, Ahmad-Nejad P, Akin I, Fastner C, El-Battrawy I, Lang S, Neumaier M, Borggrefe M, Hoffmann U (2016) Triple head-to-head comparison of fibrotic biomarkers galectin-3, osteopontin and gremlin-1 for long-term prognosis in suspected and proven acute heart failure patients. Int J Cardiol 203:398–406. CrossRefPubMedGoogle Scholar
  18. 18.
    Beltrami M, Ruocco G, Dastidar AG, Franci B, Lucani B, Aloia E, Nuti R, Palazzuoli A (2016) Additional value of galectin-3 to BNP in acute heart failure patients with preserved ejection fraction. Clin Chim Acta 457:99–105. CrossRefPubMedGoogle Scholar
  19. 19.
    Demissei BG, Valente MA, Cleland JG, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Davison B, Givertz MM, Bloomfield DM, Dittrich H, van der Meer P, van Veldhuisen DJ, Hillege HL, Voors AA (2016) Optimizing clinical use of biomarkers in high-risk acute heart failure patients. Eur J Heart Fail 18(3):269–280. CrossRefPubMedGoogle Scholar
  20. 20.
    Feola M, Testa M, Leto L, Cardone M, Sola M, Rosso GL (2016) Role of galectin-3 and plasma B type-natriuretic peptide in predicting prognosis in discharged chronic heart failure patients. Medicine (Baltimore) 95(26):e4014. CrossRefGoogle Scholar
  21. 21.
    Jackson CE, Haig C, Welsh P, Dalzell JR, Tsorlalis IK, McConnachie A, Preiss D, Anker SD, Sattar N, Petrie MC, Gardner RS, McMurray JJ (2016) The incremental prognostic and clinical value of multiple novel biomarkers in heart failure. Eur J Heart Fail 18(12):1491–1498. CrossRefPubMedGoogle Scholar
  22. 22.
    Lala RI, Darabantiu D, Pilat L, Puschita M (2016) Galectin-3: a link between myocardial and arterial stiffening in patients with acute decompensated heart failure? Arq Bras Cardiol 106(2):121–129. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mueller T, Gegenhuber A, Leitner I, Poelz W, Haltmayer M, Dieplinger B (2016) Diagnostic and prognostic accuracy of galectin-3 and soluble ST2 for acute heart failure. Clin Chim Acta 463:158–164. CrossRefPubMedGoogle Scholar
  24. 24.
    Miro O, Gonzalez de la Presa B, Herrero-Puente P, Fernandez Bonifacio R, Mockel M, Mueller C, Casals G, Sandalinas S, Llorens P, Martin-Sanchez FJ, Jacob J, Bedini JL, Gil V (2017) The GALA study: relationship between galectin-3 serum levels and short- and long-term outcomes of patients with acute heart failure. Biomarkers 22(8):731–739. CrossRefPubMedGoogle Scholar
  25. 25.
    van Vark LC, Lesman-Leegte I, Baart SJ, Postmus D, Pinto YM, de Boer RA, Asselbergs FW, Wajon E, Orsel JG, Boersma E, Hillege HL, Akkerhuis KM (2017) Prognostic value of serial galectin-3 measurements in patients with acute heart failure. J Am Heart Assoc 6(12).
  26. 26.
    Lala RI, Lungeanu D, Darabantiu D, Pilat L, Puschita M (2018) Galectin-3 as a marker for clinical prognosis and cardiac remodeling in acute heart failure. Herz 43(2):146–155. CrossRefPubMedGoogle Scholar
  27. 27.
    Testa M, Rosso GL, Ferreri C, Feola M (2018) The predictive value of plasma brain natriuretic peptide and galectin-3 in elderly patients admitted for heart failure. Diseases 6(4).
  28. 28.
    Zhang M, Meng Q, Qi X, Han Q, Wang F, Du B (2018) Comparison of multiple biomarkers for mortality prediction in patients with acute heart failure of ischemic and nonischemic etiology. Biomark Med 12(11):1207–1217. CrossRefPubMedGoogle Scholar
  29. 29.
    Chen YS, Gi WT, Liao TY, Lee MT, Lee SH, Hsu WT, Chang SS, Lee CC (2016) Using the galectin-3 test to predict mortality in heart failure patients: a systematic review and meta-analysis. Biomark Med 10(3):329–342. CrossRefPubMedGoogle Scholar
  30. 30.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefGoogle Scholar
  31. 31.
    Higgins J, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration Accessed 20 Jun 2019
  32. 32.
    Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P (2010) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed 20 June 2019
  33. 33.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. CrossRefGoogle Scholar
  34. 34.
    Patsopoulos NA, Evangelou E, Ioannidis JP (2008) Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol 37(5):1148–1157. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634CrossRefGoogle Scholar
  36. 36.
    Santaguida PL, Don-Wauchope AC, Oremus M, McKelvie R, Ali U, Hill SA, Balion C, Booth RA, Brown JA, Bustamam A, Sohel N, Raina P (2014) BNP and NT-proBNP as prognostic markers in persons with acute decompensated heart failure: a systematic review. Heart Fail Rev 19(4):453–470. CrossRefPubMedGoogle Scholar
  37. 37.
    de Boer RA, van der Velde AR, Mueller C, van Veldhuisen DJ, Anker SD, Peacock WF, Adams KF, Maisel A (2014) Galectin-3: a modifiable risk factor in heart failure. Cardiovasc Drugs Ther 28(3):237–246. CrossRefPubMedGoogle Scholar
  38. 38.
    Ibarrola J, Arrieta V, Sadaba R, Martinez-Martinez E, Garcia-Pena A, Alvarez V, Fernandez-Celis A, Gainza A, Santamaria E, Fernandez-Irigoyen J, Cachofeiro V, Zalba G, Fay R, Rossignol P, Lopez-Andres N (2018) Galectin-3 down-regulates antioxidant peroxiredoxin-4 in human cardiac fibroblasts: a new pathway to induce cardiac damage. Clin Sci (Lond) 132(13):1471–1485. CrossRefGoogle Scholar
  39. 39.
    Souza BSF, Silva DN, Carvalho RH, Sampaio GLA, Paredes BD, Aragao Franca L, Azevedo CM, Vasconcelos JF, Meira CS, Neto PC, Macambira SG, da Silva KN, Allahdadi KJ, Tavora F, de Souza Neto JD, Dos Santos RR, Soares MBP (2017) Association of cardiac galectin-3 expression, myocarditis, and fibrosis in chronic chagas disease cardiomyopathy. Am J Pathol 187(5):1134–1146. CrossRefPubMedGoogle Scholar
  40. 40.
    Gonzalez GE, Rhaleb NE, D’Ambrosio MA, Nakagawa P, Liao TD, Peterson EL, Leung P, Dai X, Janic B, Liu YH, Yang XP, Carretero OA (2016) Cardiac-deleterious role of galectin-3 in chronic angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol 311(5):H1287–H1296. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li X, Tang X, Lu J, Yuan S (2018) Therapeutic inhibition of galectin3 improves cardiomyocyte apoptosis and survival during heart failure. Mol Med Rep 17(3):4106–4112. CrossRefPubMedGoogle Scholar
  42. 42.
    Suthahar N, Meijers WC, Sillje HHW, Ho JE, Liu FT, de Boer RA (2018) Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics 8(3):593–609.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Intensive Care UnitThe First People’s Hospital of XiangshanNingboChina

Personalised recommendations