Advertisement

The renin-angiotensin-aldosterone system: a crossroad from arterial hypertension to heart failure

  • Nicola Riccardo PuglieseEmail author
  • Stefano Masi
  • Stefano Taddei
Article
  • 70 Downloads

Abstract

The renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in the regulation of blood pressure and volume homeostasis, promoting critical structural changes in every component of the cardiovascular system, including the heart and blood vessels. Consequently, the RAAS is a crucial therapeutic target for several chronic diseases of the cardiovascular system, spanning from arterial hypertension (AH) to heart failure (HF). AH represents a leading risk factor for the development of symptomatic HF, particularly with left ventricle (LV) preserved ejection fraction (HFpEF). LV diastolic dysfunction and cardiac remodelling are the first discernible manifestations of heart disease in patients with AH. Typically, AH develops many years before the diagnosis of overt HF, providing a therapeutic target for preventive strategies. Treatment of AH is based on different classes of antihypertensive drugs, which show differences in their capacity to prevent the evolution towards HF. The blockers of the RAAS are effective drugs to treat AH and prevent HF with reduced ejection fraction (HFrEF), but the evidence of the potential benefits in patients with HFpEF remains limited. In this review, the authors summarise data from several clinical trials of HFpEF and HFrEF, focusing on the mechanisms leading the transition from AH to HF and late complications.

Keywords

Renin-angiotensin-aldosterone system Arterial hypertension Heart failure Preserved ejection fraction 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803.  https://doi.org/10.1152/physrev.00036.2005 CrossRefPubMedGoogle Scholar
  2. 2.
    Ichihara A, Kobori H, Nishiyama A, Navar LG (2004) Renal renin-angiotensin system. Contrib Nephrol 143:117–130CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jaisser F, Farman N (2015) Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol Rev 68:49–75.  https://doi.org/10.1124/pr.115.011106 CrossRefGoogle Scholar
  4. 4.
    Luther JM (2016) Aldosterone in vascular and metabolic dysfunction. Curr Opin Nephrol Hypertens 25:16–21.  https://doi.org/10.1097/MNH.0000000000000189 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Díez J (2017) Chronic heart failure as a state of reduced effectiveness of the natriuretic peptide system: implications for therapy. Eur J Heart Fail 19:167–176CrossRefPubMedGoogle Scholar
  6. 6.
    Fu S, Ping P, Zhu Q et al (2018) Brain natriuretic peptide and its biochemical, analytical, and clinical issues in heart failure: a narrative review. Front Physiol 9:692.  https://doi.org/10.3389/fphys.2018.00692 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Petrie MC, Padmanabhan N, McDonald JE et al (2001) Angiotensin converting enzyme (ACE) and non-ACE dependent angiotensin II generation in resistance arteries from patients with heart failure and coronary heart disease. J Am Coll Cardiol 37:1056–1061CrossRefPubMedGoogle Scholar
  8. 8.
    Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803.  https://doi.org/10.1152/physrev.00036.2005 CrossRefPubMedGoogle Scholar
  9. 9.
    McMurray JJV, Packer M, Desai AS et al (2014) Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004.  https://doi.org/10.1056/NEJMoa1409077 CrossRefPubMedGoogle Scholar
  10. 10.
    Jhund PS, McMurray JJV (2016) The neprilysin pathway in heart failure: a review and guide on the use of sacubitril/valsartan. Heart 102:1342–1347CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Daniels LB, Maisel AS (2007) Natriuretic peptides. J Am Coll Cardiol 50:2357–2368.  https://doi.org/10.1016/j.jacc.2007.09.021 CrossRefPubMedGoogle Scholar
  12. 12.
    Azibani F, Fazal L, Chatziantoniou C, Samuel JL, Delcayre C (2013) Aldosterone mediates cardiac fibrosis in the setting of hypertension. Curr Hypertens Rep 15:395–400.  https://doi.org/10.1007/s11906-013-0354-3 CrossRefPubMedGoogle Scholar
  13. 13.
    Briet M, Schiffrin EL (2013) Vascular actions of aldosterone. J Vasc Res 50:89–99.  https://doi.org/10.1159/000345243 CrossRefPubMedGoogle Scholar
  14. 14.
    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I, ESC Scientific Document Group, de Backer G, Heagerty AM, Agewall S, Bochud M, Borghi C, Boutouyrie P, Brguljan J, Bueno H, Caiani EG, Carlberg B, Chapman N, Cífková R, Cleland JGF, Collet JP, Coman IM, de Leeuw PW, Delgado V, Dendale P, Diener HC, Dorobantu M, Fagard R, Farsang C, Ferrini M, Graham IM, Grassi G, Haller H, Hobbs FDR, Jelakovic B, Jennings C, Katus HA, Kroon AA, Leclercq C, Lovic D, Lurbe E, Manolis AJ, McDonagh TA, Messerli F, Muiesan ML, Nixdorff U, Olsen MH, Parati G, Perk J, Piepoli MF, Polonia J, Ponikowski P, Richter DJ, Rimoldi SF, Roffi M, Sattar N, Seferovic PM, Simpson IA, Sousa-Uva M, Stanton AV, van de Borne P, Vardas P, Volpe M, Wassmann S, Windecker S, Zamorano JL, Windecker S, Aboyans V, Agewall S, Barbato E, Bueno H, Coca A, Collet JP, Coman IM, Dean V, Delgado V, Fitzsimons D, Gaemperli O, Hindricks G, Iung B, Jüni P, Katus HA, Knuuti J, Lancellotti P, Leclercq C, McDonagh TA, Piepoli MF, Ponikowski P, Richter DJ, Roffi M, Shlyakhto E, Simpson IA, Sousa-Uva M, Zamorano JL, Tsioufis C, Lurbe E, Kreutz R, Bochud M, Rosei EA, Jelakovic B, Azizi M, Januszewics A, Kahan T, Polonia J, van de Borne P, Williams B, Borghi C, Mancia G, Parati G, Clement DL, Coca A, Manolis A, Lovic D, Benkhedda S, Zelveian P, Siostrzonek P, Najafov R, Pavlova O, de Pauw M, Dizdarevic-Hudic L, Raev D, Karpettas N, Linhart A, Olsen MH, Shaker AF, Viigimaa M, Metsärinne K, Vavlukis M, Halimi JM, Pagava Z, Schunkert H, Thomopoulos C, Páll D, Andersen K, Shechter M, Mercuro G, Bajraktari G, Romanova T, Trušinskis K, Saade GA, Sakalyte G, Noppe S, DeMarco DC, Caraus A, Wittekoek J, Aksnes TA, Jankowski P, Polonia J, Vinereanu D, Baranova EI, Foscoli M, Dikic AD, Filipova S, Fras Z, Bertomeu-Martínez V, Carlberg B, Burkard T, Sdiri W, Aydogdu S, Sirenko Y, Brady A, Weber T, Lazareva I, Backer TD, Sokolovic S, Jelakovic B, Widimsky J, Viigimaa M, Pörsti I, Denolle T, Krämer BK, Stergiou GS, Parati G, Trušinskis K, Miglinas M, Gerdts E, Tykarski A, de Carvalho Rodrigues M, Dorobantu M, Chazova I, Lovic D, Filipova S, Brguljan J, Segura J, Gottsäter A, Pechère-Bertschi A, Erdine S, Sirenko Y, Brady A (2018) 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 39:3021–3104CrossRefPubMedGoogle Scholar
  15. 15.
    Huang XR, Chen WY, Truong LD et al (2003) Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am Soc Nephrol 14:1738–1747.  https://doi.org/10.1097/01.asn.0000071512.93927.4e CrossRefPubMedGoogle Scholar
  16. 16.
    Loghman-Adham M, Soto CE, Inagami T, Cassis L (2004) The intrarenal renin-angiotensin system in autosomal dominant polycystic kidney disease. Am J Physiol Physiol 287:F775–F788.  https://doi.org/10.1152/ajprenal.00370.2003 CrossRefGoogle Scholar
  17. 17.
    Miyake-Ogawa C, Miyazaki M, Abe K, Harada T, Ozono Y, Sakai H, Koji T, Kohno S (2005) Tissue-specific expression of renin-angiotensin system components in IgA nephropathy. Am J Nephrol 25:1–12.  https://doi.org/10.1159/000083224 CrossRefPubMedGoogle Scholar
  18. 18.
    Mezzano S, Droguett A, Burgos ME, Ardiles LG, Flores CA, Aros CA, Caorsi I, Vío CP, Ruiz-Ortega M, Egido J (2003) Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int Suppl 64:S64–S70CrossRefGoogle Scholar
  19. 19.
    Lavoie JL, Lake-Bruse KD, Sigmund CD (2004) Increased blood pressure in transgenic mice expressing both human renin and angiotensinogen in the renal proximal tubule. Am J Physiol Physiol 286:F965–F971.  https://doi.org/10.1152/ajprenal.00402.2003 CrossRefGoogle Scholar
  20. 20.
    Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, le TH, Coffman TM (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci 103:17985–17990.  https://doi.org/10.1073/pnas.0605545103 CrossRefPubMedGoogle Scholar
  21. 21.
    Mamenko M, Zaika O, Ilatovskaya DV, Staruschenko A, Pochynyuk O (2012) Angiotensin II increases activity of the epithelial Na + channel (ENaC) in distal nephron additively to aldosterone. J Biol Chem 287:660–671.  https://doi.org/10.1074/jbc.M111.298919 CrossRefPubMedGoogle Scholar
  22. 22.
    Gao L, Wang W, Wang W, Li H, Sumners C, Zucker IH (2008) Effects of angiotensin type 2 receptor overexpression in the rostral ventrolateral medulla on blood pressure and urine excretion in normal rats. Hypertension 51:521–527.  https://doi.org/10.1161/HYPERTENSIONAHA.107.101717 CrossRefPubMedGoogle Scholar
  23. 23.
    Shimosawa T (2013) Salt, the renin–angiotensin–aldosterone system and resistant hypertension. Hypertens Res 36:657–660.  https://doi.org/10.1038/hr.2013.69 CrossRefPubMedGoogle Scholar
  24. 24.
    Miller AJ, Arnold AC (2018) The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res:1–13.  https://doi.org/10.1007/s10286-018-0572-5
  25. 25.
    Yasuda N, Akazawa H, Ito K, Shimizu I, Kudo-Sakamoto Y, Yabumoto C, Yano M, Yamamoto R, Ozasa Y, Minamino T, Naito AT, Oka T, Shiojima I, Tamura K, Umemura S, Paradis P, Nemer M, Komuro I (2012) Agonist-independent constitutive activity of angiotensin II receptor promotes cardiac remodeling in mice. Hypertension 59:627–633.  https://doi.org/10.1161/HYPERTENSIONAHA.111.175208 CrossRefPubMedGoogle Scholar
  26. 26.
    Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506.  https://doi.org/10.1038/ncb1137 CrossRefPubMedGoogle Scholar
  27. 27.
    AbdAlla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98.  https://doi.org/10.1038/35024095 CrossRefPubMedGoogle Scholar
  28. 28.
    te Riet L, van Esch JHM, Roks AJM et al (2015) Hypertension: renin–angiotensin–aldosterone system alterations. Circ Res 116:960–975.  https://doi.org/10.1161/CIRCRESAHA.116.303587 CrossRefGoogle Scholar
  29. 29.
    Koenig JB, Jaffe IZ (2014) Direct role for smooth muscle cell mineralocorticoid receptors in vascular remodeling: novel mechanisms and clinical implications. Curr Hypertens Rep 16:427.  https://doi.org/10.1007/s11906-014-0427-y CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, Feldman RD (2011) GPR30 expression is required for the mineralocorticoid receptor–independent rapid vascular effects of aldosterone. Hypertension 57:442–451.  https://doi.org/10.1161/HYPERTENSIONAHA.110.161653 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    McCurley A, Pires PW, Bender SB, Aronovitz M, Zhao MJ, Metzger D, Chambon P, Hill MA, Dorrance AM, Mendelsohn ME, Jaffe IZ (2012) Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med 18:1429–1433.  https://doi.org/10.1038/nm.2891 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Oyamada N, Sone M, Miyashita K, Park K, Taura D, Inuzuka M, Sonoyama T, Tsujimoto H, Fukunaga Y, Tamura N, Itoh H, Nakao K (2008) The role of mineralocorticoid receptor expression in brain remodeling after cerebral ischemia. Endocrinology 149:3764–3777.  https://doi.org/10.1210/en.2007-1770 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Guo C, Martinez-Vasquez D, Mendez GP, Toniolo MF, Yao TM, Oestreicher EM, Kikuchi T, Lapointe N, Pojoga L, Williams GH, Ricchiuti V, Adler GK (2006) Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology 147:5363–5373.  https://doi.org/10.1210/en.2006-0944 CrossRefPubMedGoogle Scholar
  34. 34.
    Bhella PS, Prasad A, Heinicke K et al (2011) Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail 13:1296–1304.  https://doi.org/10.1093/eurjhf/hfr133 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Simon AR, Vikis HG, Stewart S, et al. (2000) Regulation of STAT3 by direct binding to the Rac1 GTPase. Science (80- ) 290:144–7Google Scholar
  36. 36.
    Xue B, Zhang Z, Roncari CF, et al. (2012) Aldosterone acting through the central nervous system sensitizes angiotensin II-induced hypertension. Hypertension 60:1023–1030.  https://doi.org/10.1161/HYPERTENSIONAHA.112.196576
  37. 37.
    Nakagaki T, Hirooka Y, Matsukawa R et al (2012) Activation of mineralocorticoid receptors in the rostral ventrolateral medulla is involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Hypertens Res 35:470–476.  https://doi.org/10.1038/hr.2011.220 CrossRefPubMedGoogle Scholar
  38. 38.
    McKee PA, Castelli WP, McNamara PM, Kannel WB (1971) The natural history of congestive heart failure: the Framingham Study. N Engl J Med 285:1441–1446.  https://doi.org/10.1056/NEJM197112232852601 CrossRefPubMedGoogle Scholar
  39. 39.
    Kannel WB, Castelli WP, McNamara PM et al (1972) Role of blood pressure in the development of congestive heart failure. N Engl J Med 287:781–787.  https://doi.org/10.1056/NEJM197210192871601 CrossRefPubMedGoogle Scholar
  40. 40.
    Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D’Agostino RB, Kannel WB, Murabito JM, Vasan RS, Benjamin EJ, Levy D (2002) Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106:3068–3072CrossRefPubMedGoogle Scholar
  41. 41.
    Pfeffer MA (2017) Heart failure and hypertension. Med Clin North Am 101:19–28.  https://doi.org/10.1016/j.mcna.2016.08.012 CrossRefPubMedGoogle Scholar
  42. 42.
    Teo LYL, Chan LL, Lam CSP (2016) Heart failure with preserved ejection fraction in hypertension. Curr Opin Cardiol 31:410–416.  https://doi.org/10.1097/HCO.0000000000000292 CrossRefPubMedGoogle Scholar
  43. 43.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200.  https://doi.org/10.1093/eurheartj/ehw128 CrossRefGoogle Scholar
  44. 44.
    Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, Shi V, Bransford T, Takeuchi M, Gong J, Lefkowitz M, Packer M, McMurray JJV (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380:1387–1395.  https://doi.org/10.1016/S0140-6736(12)61227-6 CrossRefPubMedGoogle Scholar
  45. 45.
    Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, Tu JV, Levy D (2009) Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction. Circulation 119:3070–3077.  https://doi.org/10.1161/CIRCULATIONAHA.108.815944 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lam CSP, Donal E, Kraigher-Krainer E, Vasan RS (2011) Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail 13:18–28.  https://doi.org/10.1093/eurjhf/hfq121 CrossRefPubMedGoogle Scholar
  47. 47.
    Ho JE, Enserro D, Brouwers FP, Kizer JR, Shah SJ, Psaty BM, Bartz TM, Santhanakrishnan R, Lee DS, Chan C, Liu K, Blaha MJ, Hillege HL, van der Harst P, van Gilst WH, Kop WJ, Gansevoort RT, Vasan RS, Gardin JM, Levy D, Gottdiener JS, de Boer RA, Larson MG (2016) Predicting heart failure with preserved and reduced ejection fraction. Circ Hear Fail:9.  https://doi.org/10.1161/CIRCHEARTFAILURE.115.003116
  48. 48.
    Yancy CW, Jessup M, Chair V et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. JAC 62:1495–1539.  https://doi.org/10.1016/j.jacc.2013.05.020 CrossRefGoogle Scholar
  49. 49.
    Fabiani I, Pugliese NR, La Carrubba S et al (2019) Interactive role of diastolic dysfunction and ventricular remodeling in asymptomatic subjects at increased risk of heart failure. Int J Cardiovasc Imaging 35:1231–1240.  https://doi.org/10.1007/s10554-019-01560-6 CrossRefPubMedGoogle Scholar
  50. 50.
    Gaasch WH, Zile MR (2011) Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. J Am Coll Cardiol 58:1733–1740.  https://doi.org/10.1016/j.jacc.2011.07.022 CrossRefPubMedGoogle Scholar
  51. 51.
    Messerli FH, Rimoldi SF, Bangalore S (2017) The transition from hypertension to heart failure: contemporary update. JACC Hear Fail 5:543–551CrossRefGoogle Scholar
  52. 52.
    Gandhi SK, Powers JC, Nomeir A-M, Fowle K, Kitzman DW, Rankin KM, Little WC (2001) The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med 344:17–22.  https://doi.org/10.1056/NEJM200101043440103 CrossRefPubMedGoogle Scholar
  53. 53.
    Tsioufis C, Georgiopoulos G, Oikonomou D, Thomopoulos C, Katsiki N, Kasiakogias A, Chrysochoou C, Konstantinidis D, Kalos T, Tousoulis D (2017) Hypertension and heart failure with preserved ejection fraction: connecting the dots. Curr Vasc Pharmacol:16.  https://doi.org/10.2174/1570161115666170414120532
  54. 54.
    Gradman AH, Alfayoumi F (2006) From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease. Prog Cardiovasc Dis 48:326–341.  https://doi.org/10.1016/J.PCAD.2006.02.001 CrossRefPubMedGoogle Scholar
  55. 55.
    Oakley C (1978) Diagnosis and natural history of congested (dilated) cardiomyopathies. Postgrad Med J 54:440–450.  https://doi.org/10.1136/PGMJ.54.633.440 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ather S, Bangalore S, Vemuri S, Cao LB, Bozkurt B, Messerli FH (2011) Trials on the effect of cardiac resynchronization on arterial blood pressure in patients with heart failure. Am J Cardiol 107:561–568.  https://doi.org/10.1016/j.amjcard.2010.10.014 CrossRefPubMedGoogle Scholar
  57. 57.
    Fonarow GC, Adams KF, Abraham WT et al (2005) Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. J Am Med Assoc 293:572–580.  https://doi.org/10.1001/jama.293.5.572 CrossRefGoogle Scholar
  58. 58.
    Lee TT, Chen J, Cohen DJ, Tsao L (2006) The association between blood pressure and mortality in patients with heart failure. Am Heart J 151:76–83.  https://doi.org/10.1016/J.AHJ.2005.03.009 CrossRefPubMedGoogle Scholar
  59. 59.
    McAlister FA, Wiebe N, Ezekowitz JA et al (2009) Meta-analysis: β-blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med 150:784–794CrossRefGoogle Scholar
  60. 60.
    Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376:875–885.  https://doi.org/10.1016/S0140-6736(10)61198-1 CrossRefGoogle Scholar
  61. 61.
    Messerli FH, Rimoldi SF, Bangalore S, Bavishi C, Laurent S (2016) When an increase in central systolic pressure overrides the benefits of heart rate lowering. J Am Coll Cardiol 68:754–762CrossRefPubMedGoogle Scholar
  62. 62.
    Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271.  https://doi.org/10.1016/J.JACC.2013.02.092 CrossRefPubMedGoogle Scholar
  63. 63.
    Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131:550–559.  https://doi.org/10.1161/CIRCULATIONAHA.114.009625 CrossRefPubMedGoogle Scholar
  64. 64.
    Bock JS, Gottlieb SS (2010) Cardiorenal syndrome: new perspectives. Circulation 121:2592–2600CrossRefPubMedGoogle Scholar
  65. 65.
    Ronco C, Cicoira M, McCullough PA (2012) Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol 60:1031–1042CrossRefPubMedGoogle Scholar
  66. 66.
    Williams B, Lacy PS, Thom SM et al (2006) Differential impact of blood pressure–lowering drugs on central aortic pressure and clinical outcomes. Circulation 113:1213–1225.  https://doi.org/10.1161/CIRCULATIONAHA.105.595496 CrossRefPubMedGoogle Scholar
  67. 67.
    Bangalore S, Wild D, Parkar S, Kukin M, Messerli FH (2008) Beta-blockers for primary prevention of heart failure in patients with hypertension. Insights from a meta-analysis. J Am Coll Cardiol 52:1062–1072.  https://doi.org/10.1016/j.jacc.2008.05.057
  68. 68.
    Zhou M, Chen N, Yang M, et al. (2009) Calcium channel blockers versus other classes of drugs for hypertension. In: Cochrane database of systematic reviewsGoogle Scholar
  69. 69.
    ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288:2981–2997CrossRefGoogle Scholar
  70. 70.
    Messerli FH, Rimoldi SF, Bangalore S (2017) The transition from hypertension to heart failure. JACC Hear Fail 5:543–551.  https://doi.org/10.1016/j.jchf.2017.04.012 CrossRefGoogle Scholar
  71. 71.
    SHEP Cooperative Research Group (1991) Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. JAMA 265:3255.  https://doi.org/10.1001/jama.1991.03460240051027 CrossRefGoogle Scholar
  72. 72.
    Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, Stoyanovsky V, Antikainen RL, Nikitin Y, Anderson C, Belhani A, Forette F, Rajkumar C, Thijs L, Banya W, Bulpitt CJ (2008) Treatment of hypertension in patients 80 years of age or older. N Engl J Med 358:1887–1898.  https://doi.org/10.1056/NEJMoa0801369 CrossRefPubMedGoogle Scholar
  73. 73.
    Thomopoulos C, Parati G, Zanchetti A (2016) Effects of blood pressure-lowering treatment. 6. Prevention of heart failure and new-onset heart failure – meta-analyses of randomized trials. J Hypertens 34:373–384.  https://doi.org/10.1097/HJH.0000000000000848 CrossRefPubMedGoogle Scholar
  74. 74.
    Messerli FH, Bangalore S (2017) Angiotensin receptor blockers reduce cardiovascular events, including the risk of myocardial infarction. Circulation 135:2085–2087.  https://doi.org/10.1161/CIRCULATIONAHA.116.025950 CrossRefPubMedGoogle Scholar
  75. 75.
    Bangalore S, Fakheri R, Toklu B, Ogedegbe G, Weintraub H, Messerli FH (2016) Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers in patients without heart failure? Insights from 254,301 patients from randomized trials. Mayo Clin Proc 91:51–60.  https://doi.org/10.1016/J.MAYOCP.2015.10.019 CrossRefPubMedGoogle Scholar
  76. 76.
    Bromfield SG, Bowling CB, Tanner RM, Peralta CA, Odden MC, Oparil S, Muntner P (2014) Trends in hypertension prevalence, awareness, treatment, and control among US adults 80 years and older, 1988-2010. J Clin Hypertens 16:270–276.  https://doi.org/10.1111/jch.12281 CrossRefGoogle Scholar
  77. 77.
    Lip GYH, Skjøth F, Overvad K, Rasmussen LH, Larsen TB (2015) Blood pressure and prognosis in patients with incident heart failure: the Diet, Cancer and Health (DCH) cohort study. Clin Res Cardiol 104:1088–1096.  https://doi.org/10.1007/s00392-015-0878-4 CrossRefPubMedGoogle Scholar
  78. 78.
    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I, ESC Scientific Document Group, de Backer G, Heagerty AM, Agewall S, Bochud M, Borghi C, Boutouyrie P, Brguljan J, Bueno H, Caiani EG, Carlberg B, Chapman N, Cífková R, Cleland JGF, Collet JP, Coman IM, de Leeuw PW, Delgado V, Dendale P, Diener HC, Dorobantu M, Fagard R, Farsang C, Ferrini M, Graham IM, Grassi G, Haller H, Hobbs FDR, Jelakovic B, Jennings C, Katus HA, Kroon AA, Leclercq C, Lovic D, Lurbe E, Manolis AJ, McDonagh TA, Messerli F, Muiesan ML, Nixdorff U, Olsen MH, Parati G, Perk J, Piepoli MF, Polonia J, Ponikowski P, Richter DJ, Rimoldi SF, Roffi M, Sattar N, Seferovic PM, Simpson IA, Sousa-Uva M, Stanton AV, van de Borne P, Vardas P, Volpe M, Wassmann S, Windecker S, Zamorano JL, Windecker S, Aboyans V, Agewall S, Barbato E, Bueno H, Coca A, Collet JP, Coman IM, Dean V, Delgado V, Fitzsimons D, Gaemperli O, Hindricks G, Iung B, Jüni P, Katus HA, Knuuti J, Lancellotti P, Leclercq C, McDonagh TA, Piepoli MF, Ponikowski P, Richter DJ, Roffi M, Shlyakhto E, Simpson IA, Sousa-Uva M, Zamorano JL, Tsioufis C, Lurbe E, Kreutz R, Bochud M, Rosei EA, Jelakovic B, Azizi M, Januszewics A, Kahan T, Polonia J, van de Borne P, Williams B, Borghi C, Mancia G, Parati G, Clement DL, Coca A, Manolis A, Lovic D, Benkhedda S, Zelveian P, Siostrzonek P, Najafov R, Pavlova O, de Pauw M, Dizdarevic-Hudic L, Raev D, Karpettas N, Linhart A, Olsen MH, Shaker AF, Viigimaa M, Metsärinne K, Vavlukis M, Halimi JM, Pagava Z, Schunkert H, Thomopoulos C, Páll D, Andersen K, Shechter M, Mercuro G, Bajraktari G, Romanova T, Trušinskis K, Saade GA, Sakalyte G, Noppe S, DeMarco DC, Caraus A, Wittekoek J, Aksnes TA, Jankowski P, Polonia J, Vinereanu D, Baranova EI, Foscoli M, Dikic AD, Filipova S, Fras Z, Bertomeu-Martínez V, Carlberg B, Burkard T, Sdiri W, Aydogdu S, Sirenko Y, Brady A, Weber T, Lazareva I, Backer TD, Sokolovic S, Jelakovic B, Widimsky J, Viigimaa M, Pörsti I, Denolle T, Krämer BK, Stergiou GS, Parati G, Trušinskis K, Miglinas M, Gerdts E, Tykarski A, de Carvalho Rodrigues M, Dorobantu M, Chazova I, Lovic D, Filipova S, Brguljan J, Segura J, Gottsäter A, Pechère-Bertschi A, Erdine S, Sirenko Y, Brady A (2018) 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Eur Heart J 39:3021–3104.  https://doi.org/10.1097/HJH CrossRefPubMedGoogle Scholar
  79. 79.
    Williams B, Macdonald TM, Morant S et al (2015) Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 386:2059–2068.  https://doi.org/10.1016/S0140-6736(15)00257-3 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Beckett NS, Peters R, Fletcher AE et al (2008) Treatment of hypertension in patients 80 years of age or older. N Engl J Med 358:1887–1898.  https://doi.org/10.1056/NEJMoa0801369 CrossRefPubMedGoogle Scholar
  81. 81.
    Heller SR, ADVANCE Collaborative Group on behalf of the AC (2009) A summary of the ADVANCE trial. Diabetes Care 32 Suppl 2:S357–S361.  https://doi.org/10.2337/dc09-S339
  82. 82.
    Dahlöf B, Sever PS, Poulter NR, et al. (2005) Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet 366:895–906.  https://doi.org/10.1016/S0140-6736(05)67185-1
  83. 83.
    Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95.  https://doi.org/10.1161/01.RES.57.1.84 CrossRefPubMedGoogle Scholar
  84. 84.
    Sharpe N, Smith H, Murphy J et al (1991) Early prevention of left ventricular dysfunction after myocardial infarction with angiotensin-converting-enzyme inhibition. Lancet 337:872–876.  https://doi.org/10.1016/0140-6736(91)90202-Z CrossRefPubMedGoogle Scholar
  85. 85.
    St John Sutton M, Pfeffer MA, Plappert T, Rouleau JL, Moyé LA, Dagenais GR, Lamas GA, Klein M, Sussex B, Goldman S (1994) Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 89:68–75.  https://doi.org/10.1161/01.CIR.89.1.68
  86. 86.
    Konstam MA, Rousseau MF, Kronenberg MW, Udelson JE, Melin J, Stewart D, Dolan N, Edens TR, Ahn S, Kinan D (1992) Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators Circulation 86:431–438.  https://doi.org/10.1161/01.CIR.86.2.431 CrossRefPubMedGoogle Scholar
  87. 87.
    Konstam MA, Kronenberg MW, Rousseau MF, Udelson JE, Melin J, Stewart D, Dolan N, Edens TR, Ahn S, Kinan D (1993) Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation 88:2277–2283.  https://doi.org/10.1161/01.CIR.88.5.2277 CrossRefPubMedGoogle Scholar
  88. 88.
    Cohn JN, Tognoni G (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667–1675.  https://doi.org/10.1056/NEJMoa010713 CrossRefPubMedGoogle Scholar
  89. 89.
    Pfeffer MA, McMurray JJV, Velazquez EJ et al (2003) Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 349:1893–1906.  https://doi.org/10.1056/NEJMoa032292 CrossRefPubMedGoogle Scholar
  90. 90.
    McMurray JJ, Östergren J, Swedberg K et al (2003) Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet 362:767–771.  https://doi.org/10.1016/S0140-6736(03)14283-3 CrossRefPubMedGoogle Scholar
  91. 91.
    Lakhdar R, Al-Mallah MH, Lanfear DE (2008) Safety and tolerability of angiotensin-converting enzyme inhibitor versus the combination of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker in patients with left ventricular dysfunction: a systematic review and meta-analysis of randomized controlled trials. J Card Fail 14:181–188.  https://doi.org/10.1016/J.CARDFAIL.2007.11.008 CrossRefPubMedGoogle Scholar
  92. 92.
    Fraccarollo D, Galuppo P, Hildemann S, Christ M, Ertl G, Bauersachs J (2003) Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction. J Am Coll Cardiol 42:1666–1673.  https://doi.org/10.1016/J.JACC.2003.05.003 CrossRefPubMedGoogle Scholar
  93. 93.
    Hayashi M, Tsutamoto T, Wada A, Tsutsui T, Ishii C, Ohno K, Fujii M, Taniguchi A, Hamatani T, Nozato Y, Kataoka K, Morigami N, Ohnishi M, Kinoshita M, Horie M (2003) Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial in. Circulation 107:2559–2565.  https://doi.org/10.1161/01.CIR.0000068340.96506.0F CrossRefPubMedGoogle Scholar
  94. 94.
    Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717.  https://doi.org/10.1056/NEJM199909023411001 CrossRefPubMedGoogle Scholar
  95. 95.
    Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348:1309–1321.  https://doi.org/10.1056/nejmoa030207 CrossRefPubMedGoogle Scholar
  96. 96.
    Zannad F, McMurray JJV, Krum H et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21.  https://doi.org/10.1056/NEJMoa1009492 CrossRefPubMedGoogle Scholar
  97. 97.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld JA, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure. J Am Coll Cardiol 70:776–803.  https://doi.org/10.1016/j.jacc.2017.04.025 CrossRefPubMedGoogle Scholar
  98. 98.
    McMurray JJV, Pitt B, Latini R et al (2008) Effects of the oral direct renin inhibitor aliskiren in patients with symptomatic heart failure. Circ Heart Fail 1:17–24.  https://doi.org/10.1161/CIRCHEARTFAILURE.107.740704 CrossRefPubMedGoogle Scholar
  99. 99.
    Parving H-H, Brenner BM, McMurray JJV et al (2012) Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 367:2204–2213.  https://doi.org/10.1056/nejmoa1208799 CrossRefPubMedGoogle Scholar
  100. 100.
    Solomon SD, Hee Shin S, Shah A, Skali H, Desai A, Kober L, Maggioni AP, Rouleau JL, Kelly RY, Hester A, McMurray JJV, Pfeffer MA, for the Aliskiren Study in Post-MI Patients to Reduce Remodeling (ASPIRE) Investigators (2011) Effect of the direct renin inhibitor aliskiren on left ventricular remodelling following myocardial infarction with systolic dysfunction. Eur Heart J 32:1227–1234.  https://doi.org/10.1093/eurheartj/ehq522 CrossRefPubMedGoogle Scholar
  101. 101.
    Gheorghiade M, Böhm M, Greene SJ, Fonarow GC, Lewis EF, Zannad F, Solomon SD, Baschiera F, Botha J, Hua TA, Gimpelewicz CR, Jaumont X, Lesogor A, Maggioni AP, ASTRONAUT Investigators and Coordinators (2013) Effect of aliskiren on postdischarge mortality and heart failure readmissions among patients hospitalized for heart failure: the ASTRONAUT randomized trial. JAMA - J Am Med Assoc 309:1125–1135.  https://doi.org/10.1001/jama.2013.1954 CrossRefGoogle Scholar
  102. 102.
    O’Connor CM, Starling RC, Hernandez AF et al (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365:32–43.  https://doi.org/10.1056/nejmoa1100171 CrossRefPubMedGoogle Scholar
  103. 103.
    Hata N, Seino Y, Tsutamoto T, Hiramitsu S, Kaneko N, Yoshikawa T, Yokoyama H, Tanaka K, Mizuno K, Nejima J, Kinoshita M (2008) Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure. Circ J 72:1787–1793.  https://doi.org/10.1253/circj.cj-08-0130 CrossRefPubMedGoogle Scholar
  104. 104.
    Dalzell JR, Seed A, Berry C, Whelan CJ, Petrie MC, Padmanabhan N, Clarke A, Biggerstaff F, Hillier C, McMurray JJV (2014) Effects of neutral endopeptidase (neprilysin) inhibition on the response to other vasoactive peptides in small human resistance arteries: studies with thiorphan and omapatrilat. Cardiovasc Ther 32:13–18.  https://doi.org/10.1111/1755-5922.12053 CrossRefPubMedGoogle Scholar
  105. 105.
    Packer M, Califf RM, Konstam MA, Krum H, McMurray JJ, Rouleau JL, Swedberg K (2002) Comparison of omapatrilat and enalapril in patients with chronic heart failure. Circulation 106:920–926.  https://doi.org/10.1161/01.cir.0000029801.86489.50 CrossRefPubMedGoogle Scholar
  106. 106.
    McMurray JJV, Packer M, Desai AS et al (2013) Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the prospective comparison of ARNI with ACEI to determine impact. Eur J Heart Fail 15:1062–1073CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Bavishi C, Messerli FH, Kadosh B, Ruilope LM, Kario K (2015) Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur Heart J 36:1967–1973.  https://doi.org/10.1093/eurheartj/ehv142 CrossRefPubMedGoogle Scholar
  108. 108.
    Bruno RM, Taddei S (2017) Sacubitril/valsartan and low blood pressure in heart failure with reduced ejection fraction. Eur Heart J 38:1144–1146.  https://doi.org/10.1093/eurheartj/ehx014 CrossRefPubMedGoogle Scholar
  109. 109.
    Messerli FH, Bangalore S (2017) Angiotensin receptor blockers reduce cardiovascular events, including the risk of myocardial infarction. Circulation 135:2085–2087.  https://doi.org/10.1161/circulationaha.116.025950 CrossRefPubMedGoogle Scholar
  110. 110.
    Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJV, Michelson EL, Olofsson B, Östergren J (2003) Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet 362:777–781.  https://doi.org/10.1016/S0140-6736(03)14285-7 CrossRefPubMedGoogle Scholar
  111. 111.
    Cleland JGF, Tendera M, Adamus J et al (2006) The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 27:2338–2345.  https://doi.org/10.1093/eurheartj/ehl250 CrossRefPubMedGoogle Scholar
  112. 112.
    Massie BM, Carson PE, McMurray JJ et al (2008) Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 359:2456–2467.  https://doi.org/10.1056/NEJMoa0805450 CrossRefPubMedGoogle Scholar
  113. 113.
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Clausell N, Desai AS, Diaz R, Fleg JL, Gordeev I, Harty B, Heitner JF, Kenwood CT, Lewis EF, O’Meara E, Probstfield JL, Shaburishvili T, Shah SJ, Solomon SD, Sweitzer NK, Yang S, McKinlay SM (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:1383–1392CrossRefPubMedGoogle Scholar
  114. 114.
    Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, Shi V, Bransford T, Takeuchi M, Gong J, Lefkowitz M, Packer M, McMurray JJV (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380:1387–1395.  https://doi.org/10.1016/S0140-6736(12)61227-6 CrossRefPubMedGoogle Scholar
  115. 115.
    Solomon SD, Rizkala AR, Gong J, Wang W, Anand IS, Ge J, Lam CSP, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM, Rouleau JL, van Veldhuisen DJ, Zannad F, Zile MR, Desai AS, Shi VC, Lefkowitz MP, McMurray JJV (2017) Angiotensin receptor neprilysin inhibition in heart failure with preserved ejection fraction: rationale and design of the PARAGON-HF trial. JACC Hear. Fail. 5:471–482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly

Personalised recommendations