Advertisement

Minireview: are SGLT2 inhibitors heart savers in diabetes?

  • Petra Grubić RotkvićEmail author
  • Maja Cigrovski Berković
  • Nikola Bulj
  • Luka Rotkvić
Article
  • 85 Downloads

Abstract

Sodium-glucose cotransporter 2 (SGLT2) inhibitors, a class of drugs that promote urinary glucose excretion in the treatment of diabetes, have provoked large interest of scientific and professional community due to their positive and, somehow, unexpected results in the three major cardiovascular outcome trials (EMPA-REG OUTCOME trial with empagliflozin, CANVAS Program with canagliflozin, and DECLARE-TIMI 58 with dapagliflozin). In fact, along with the reduction of major adverse cardiovascular events, SGLT2 inhibitors reduced significantly hospitalization for heart failure regardless of existing atherosclerotic cardiovascular disease or a history of heart failure. The latter have reminded us of the frequent but neglected entity of diabetic cardiomyopathy which is currently poorly understood despite its great clinical importance. Physiological mechanisms responsible for the benefits of SGLT2 inhibitors are complex and multifactorial and still not well defined. Interestingly, the time frame of their effect excludes a glucose- and antiatherosclerotic-mediated effect. It would be of great importance to better understand SGLT2 inhibitor mechanisms of action since they could have a potential to be used in early stages of diabetes as cardioprotective agents. There are widely available biomarkers as well as echocardiography that are used in everyday clinical practice and could elucidate physiological mechanisms in the heart protection with SGLT2 inhibitors treatment but studies are still lacking. The purpose of this minireview is to summarize the latest concepts about SGLT2 inhibitors and its benefits regarding diabetic cardiomyopathy especially on its early stage development and to discuss controversies and potential future developments in the field.

Keywords

SGLT2 inhibitors Diabetic cardiomyopathy Diabetes Biomarkers Echocardiography 

Notes

Compliance with ethical standards

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Greene SJ, Vaduganathan M, Khan MS, Bakris GL, Weir MR, Seltzer JH, Sattar N, McGuire DK, Januzzi JL, Stockbridge N, Butler J (2018) Prevalent and incident heart failure in cardiovascular outcome trials of patients with type 2 diabetes. J Am Coll Cardiol 71:1379–1390Google Scholar
  2. 2.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128Google Scholar
  3. 3.
    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657Google Scholar
  4. 4.
    Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380(4):347–357Google Scholar
  5. 5.
    Verma S, McMurray JJV, Cherney DZI (2017) The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure. JAMA Cardiol 2(9):939–940Google Scholar
  6. 6.
    Staels B (2017) Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am J Med 130(6S):S30–S39Google Scholar
  7. 7.
    Byrne NJ, Parajuli N, Levasseur JL et al (2017) Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC: Basic Translational Sci 2(4):347–354Google Scholar
  8. 8.
    Verma S, McMurray JJV (2018) SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia 61(10):2108–2117Google Scholar
  9. 9.
    American Diabetes Association (2018) Standards of medical care in diabetes-2018. Diabetes Care 41(Suppl.1):S1–S2Google Scholar
  10. 10.
    Huynh K, Bernardo BC, McMullen JR, Ritchie RH (2014) Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacology Ther 42(3):375–415Google Scholar
  11. 11.
    Levelt E, Gulsin G, Neubauer S, McCann GP (2018) Mechanisms in endocrinology: diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur J Endocrinol 178(4):R127–R139Google Scholar
  12. 12.
    Takayuki M, Satoshi Y, Hidemichi K, Tetsuji M (2013) Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18(2):149–166Google Scholar
  13. 13.
    Lahnwong S, Chattipakorn SC, Chattipakorn N (2018) Potential mechanisms responsible for cardioprotective efects of sodium–glucose co-transporter 2 inhibitors. Cardiovasc Diabetol 17(1):101Google Scholar
  14. 14.
    Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393(10166):31–39Google Scholar
  15. 15.
    Ciof G, Giorda CB, Chinali M et al (2012) Analysis of midwall shortening reveals high prevalence of left ventricular myocardial dysfunction in patients with diabetes mellitus: the DYDA study. Eur J Prev Cardiol 19(5):935–943Google Scholar
  16. 16.
    Faden G, Faganello G, De Feo S et al (2013) The increasing detection of asymptomatic left ventricular dysfunction in patients with type 2 diabetes mellitus without overt cardiac disease: data from the SHORTWAVE study. Diabetes Res Clin Pract 101(3):309–316Google Scholar
  17. 17.
    Bolinder J, Ljunggren Ö, Johansson L, Wilding J, Langkilde AM, Sjöström CD, Sugg J, Parikh S (2014) Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 16(2):159–169Google Scholar
  18. 18.
    DeFronzo RA (2016) The EMPA-REG study: what has it told to us? J Diabetes Complicat 30(1):1–2Google Scholar
  19. 19.
    Kern M, Kloting N, Mark M, Mayoux E, Klein T, Bluher M (2016) The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism 65(2):114–123Google Scholar
  20. 20.
    Ptaszynska A, Hardy E, Johnsson E, Parikh S, List J (2013) Effects of dapagliflozin on cardiovascular risk factors. Postgrad Med 125:181–189Google Scholar
  21. 21.
    Kittleson MM, St. John ME, Bead V et al (2007) Increased levels of uric acid predict haemodynamic compromise in patients with heart failure independentely of B-type natriuretic peptide levels. Heart 93:365–367Google Scholar
  22. 22.
    Feig DI, Kang DH, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359(17):1811–1821Google Scholar
  23. 23.
    Hare JM, Johnson RJ (2003) Uric acid predicts clinical outcomes in heart failure: insights regarding the role of xanthine oxidase and uric acid in disease pathophysiology. Circulation 107:1951–1953Google Scholar
  24. 24.
    Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171:2080–2090Google Scholar
  25. 25.
    Mudaliar S, Alloju S, Henry RR (2016) Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care 39:1115–1122Google Scholar
  26. 26.
    Daniele G, Xiong J, Solis-Herrera C, Merovci A, Eldor R, Tripathy D, DeFronzo RA, Norton L, Abdul-Ghani M (2016) Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care 39:2036–2041Google Scholar
  27. 27.
    Newman JC, Verdin E (2014) Ketone bodies as signaling metabolites. Trends Endocrinol Metab 25:42–52Google Scholar
  28. 28.
    Newman JC, Verdin E (2014) Beta-hydroxybutyrate: much more than a metabolite. Diabetes Res Clin Pract 106(2):173–181Google Scholar
  29. 29.
    Haces ML, Hernandez-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L (2008) Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol 211(1):85–96Google Scholar
  30. 30.
    Prattichizzo F, De Nigris V, Micheloni S, La Sala L, Ceriello A (2018) Increases in circulating levels of ketone bodies and cardiovascular protection with SGLT2 inhibitors: is low-grade inflammation the neglected component? Diabetes Obes Metab 20(11):2515–2522Google Scholar
  31. 31.
    Kutoh E, Hayashi J (2019) Effect of canagliflozin on heart function involving ketone bodies in patients with type 2 diabetes. Drug Res (Stuttg) 69(05):297–300Google Scholar
  32. 32.
    Abdul-Ghani M, Del Prato S, Chilton R, DeFronzo RA (2016) SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPAREG OUTCOME study. Diabetes Care 39:717–725Google Scholar
  33. 33.
    Sano M (2018) A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol 71(5):471–476Google Scholar
  34. 34.
    Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, Broedl UC, Woerle HJ (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124:499–508Google Scholar
  35. 35.
    Jones BJ, Tan T, Bloom SR (2012) Minireview: glucagon in stress and energy homeostasis. Endocrinology 153:1049–1054Google Scholar
  36. 36.
    Regan TJ, Lehan PH, Henneman DH, Behar A, Hellems HK (1964) Myocardial, metabolic and contractile response to glucagon and epinephrine. J Lab Clin Med 63:638–664Google Scholar
  37. 37.
    Ceriello A, Genovese S, Mannucci E, Gronda E (2016) Glucagon and heart in type 2 diabetes: new perspectives. Cardiovasc Diabetol 15:123Google Scholar
  38. 38.
    Cherney DZ, Perkins BA, Soleymanlou N et al (2014) Sodium glucose cotransport-2 inhibition and intrarenal RAS activity in people with type 1 diabetes. Kidney Int 86:1057–1058Google Scholar
  39. 39.
    Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862Google Scholar
  40. 40.
    Cherney DZ, Perkins BA, Soleymanlou N et al (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 129:587–597Google Scholar
  41. 41.
    Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2:1025–1029Google Scholar
  42. 42.
    Baartscheer A, Schumacher CA, Wust RC et al (2017) Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60:568–573Google Scholar
  43. 43.
    Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, O'Rourke B, Maack C (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613Google Scholar
  44. 44.
    Baartscheer A, Schumacher CA, Borren MM, Belterman CN, Coronel R, Fiolet JW (2003) Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024Google Scholar
  45. 45.
    Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S (2005) Adipokines: molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol 288(5):H2031–H2041Google Scholar
  46. 46.
    Patel VB, Shah S, Verma S, Oudit GY (2017) Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev 22:889–902Google Scholar
  47. 47.
    Timothy Garvey W, Van Gaal L, Leiter LA et al (2018) Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism 85:32–37Google Scholar
  48. 48.
    Sato T, Aizawa Y, Yuasa S, Kishi S, Fuse K, Fujita S, Ikeda Y, Kitazawa H, Takahashi M, Sato M, Okabe M (2018) The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol 17(1):6Google Scholar
  49. 49.
    Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ (2016) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134:752–772Google Scholar
  50. 50.
    Sato T, Miki T, Ohnishi H, Yamashita T, Takada A, Yano T, Tanno M, Tsuchida A, Miura T (2017) Effect of sodium–glucose co-transporter-2 inhibitors on impaired ventricular repolarization in people with type 2 diabetes. Diabet Med 34(10):1367–1371Google Scholar
  51. 51.
    Natali A, Nesti L, Fabiani I, Calogero E, Di Bello V (2017) Impact of empagliflozin on subclinical left ventricular dysfunction and on the mechanisms involved in myocardial disease progression in type 2 diabetes: rationale and design of the EMPA-HEART trial. Cardiovasc Dabet 16(1):130Google Scholar
  52. 52.
    Marwick TH, Ritchie R, Shaw JE, Kaye D (2018) Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol 71(3):339–351Google Scholar
  53. 53.
    Baldassarre MPA, Andersen A, Consoli A, Knop FK, Vilsboll T (2018) Cardiovascular biomarkers in clinical studies of type 2 diabetes. Diabetes Obes Metab 20(6):1350–1360Google Scholar
  54. 54.
    van Kimmenade RR, Januzzi JL Jr (2012) Emerging biomarkers in heart failure. Clin Chem 58(1):127–138Google Scholar
  55. 55.
    Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159Google Scholar
  56. 56.
    Tanaka H, Takano K, Iijima H, Kubo H, Maruyama N, Hashimoto T, Arakawa K, Togo M, Inagaki N, Kaku K (2017) Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Adv Ther 34(2):436–451Google Scholar
  57. 57.
    Eickhoff MK, Dekkers CCJ, Kramers BJ, Laverman GD, Frimodt-Moller M, Jorgensen NR, Faber J et al (2019) Effects of dapagliflozin on volume status when added to renin-angiotensin system inhibitors. J Clin Med 8(6):779Google Scholar
  58. 58.
    Januzzi JL, Butler J, Jarolim P, Sattar N, Vijapurkar U, Desai M, Davies MJ (2017) Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol 70(6):704–712Google Scholar
  59. 59.
    Majowicz MP, Gonzalez Bosc LV, Albertoni Borghese MF, Delgado MF, Ortiz MC, Sterin Speziale N, Vidal NA (2003) Atrial natriuretic peptide and endothelin-3 target renal sodium-glucose cotransporter. Peptides 24(12):1971–1976Google Scholar
  60. 60.
    Volpe M, Carnovali M, Mastromarino V (2016) The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci 130(2):57–77Google Scholar
  61. 61.
    Bonnet F, Scheen AJ (2018) Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential diabetes complications and cardiovascular disease. Diabetes Metab 44(6):457–464Google Scholar
  62. 62.
    Ho E, Galougahi KK, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1(1):483–491Google Scholar
  63. 63.
    Enomoto M, Ishizu T, Seo Y, Yamamoto M, Suzuki H, Shimano H, Kawakami Y, Aonuma K (2015) Subendocardial systolic dysfunction in asymptomatic normotensive diabetic patients. Circ J 79:1749–1755Google Scholar
  64. 64.
    https://clinicaltrials.gov/ Accessed 5 July 2019

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of CardiologyUniversity Hospital “Sveti Duh”ZagrebCroatia
  2. 2.Department of Endocrinology, Diabetes, and MetabolismUniversity Hospital Centre “Sestre milosrdnice”ZagrebCroatia
  3. 3.Department for Medicine of Sports and Exercise, Faculty of KinesiologyUniversity of ZagrebZagrebCroatia
  4. 4.Department of CardiologyUniversity Hospital Centre “Sestre milosrdnice”ZagrebCroatia
  5. 5.Department of CardiologyMagdalena Clinic for Cardiovascular DiseaseKrapinske TopliceCroatia

Personalised recommendations