β-Adrenergic receptor, an essential target in cardiovascular diseases

  • Daniel Chikere Ali
  • Muhammad Naveed
  • Andrew Gordon
  • Fatima Majeed
  • Muhammad Saeed
  • Michael I. Ogbuke
  • Muhammad Atif
  • Hafiz Muhammad Zubair
  • Li ChangxingEmail author


β-Adrenergic receptors (βARs) belong to a large family of cell surface receptors known as G protein–coupled receptors (GPCRs). They are coupled to Gs protein (Gαs) for the activation of adenylyl cyclase (AC) yielding cyclic AMP (CAMP), and this provides valuable responses, which can affect the cardiac function such as injury. The binding of an agonist to βAR enhances conformation changes that lead to the Gαs subtype of heterotrimeric G protein which is the AC stimulatory G protein for activation of CAMP in the cells. However, cardiovascular diseases (CVD) have been reported as having an increased rate of death and β1AR, and β2AR are a promising tool that improves the regulatory function in the cardiovascular system (CVS) via signaling. It increases the Gα level, which activates βAR kinase (βARK) that affects and enhances the progression of heart failure (HF) through the activation of cardiomyocyte βARs. We also explained that an increase in GPCR kinases (GRKs) would practically improve the HF pathogenesis and this occurs via the desensitization of βARs, which causes the loss of contractile reserve. The consistency or overstimulation of catecholamines contributes to CVD such as stroke, HF, and cardiac hypertrophy. When there is a decrease in catecholamine responsiveness, it causes aging in old people because the reduction of βAR sensitivity and density in the myocardium enhances downregulation of βARs to AC in the human heart.


Cardiovascular disease Heart failure β-Adrenergic receptor Catecholamines Adenylyl cyclase GPCR 



We are very grateful to Ali Ozoemena for his unalloyed pieces of advice to complete this article. We are thankful to Chinese Scholarship Council (CSC) for funding our research scholar FATIMA Majeed in her doctorate studies. Furthermore, all the authors of the manuscript also thank and acknowledge their respective Universities and Institutes.

Funding information

The Qinghai Science and Technology Department Project (Nos. 2018-ZJ-730 & 2019-SF-134) supported this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rudomanova V, Blaxall BC (2017) Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies. Biochim Biophys Acta (BBA) - Mol Basis Dis 1863(8):1883–1892Google Scholar
  2. 2.
    Li D, Paterson DJ (2016) Cyclic nucleotide regulation of cardiac sympatho-vagal responsiveness. J Physiol 594(14):3993–4008Google Scholar
  3. 3.
    Rankin J, Rowen D, Howe A, Cleland JG, Whitty JA (2019) Valuing health–related quality of life in heart failure: a systematic review of methods to derive quality–adjusted life years (QALYs) in trial-based cost–utility analyses. Heart Fail Rev 24(4): 549–563Google Scholar
  4. 4.
    Morris JH, Chen L (2019) Exercise training and heart failure: a review of the literature. Card Fail Rev 5(1):57–61Google Scholar
  5. 5.
    Guha K, McDonagh T (2013) Heart failure epidemiology: European perspective. Curr Cardiol Rev 9(2):123–127Google Scholar
  6. 6.
    Chatterjee S, Biondi-Zoccai G, Abbate A, D’Ascenzo F, Castagno D, Van Tassell B, Mukherjee D, Lichstein E (2013) Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. BMj 346:f55Google Scholar
  7. 7.
    Jeyanantham K, Kotecha D, Thanki D, Dekker R, Lane DA (2017) Effects of cognitive behavioural therapy for depression in heart failure patients: a systematic review and meta-analysis. Heart Fail Rev 22(6):731–741Google Scholar
  8. 8.
    Nadar SK, Shaikh MM (2019) Biomarkers in routine heart failure clinical care. Card Fail Rev 5(1):50Google Scholar
  9. 9.
    Madamanchi A (2007) β-Adrenergic receptor signaling in cardiac function and heart failure. McGill J Med 10(2):99Google Scholar
  10. 10.
    Chen J-Z, Wang J, Xie X-Q (2007) GPCR structure-based virtual screening approach for CB2 antagonist search. J Chem Inf Model 47(4):1626–1637Google Scholar
  11. 11.
    Shoichet BK, Kobilka BK (2012) Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 33(5):268–272Google Scholar
  12. 12.
    Jacobson KA (2015) New paradigms in GPCR drug discovery. Biochem Pharmacol 98(4):541–555Google Scholar
  13. 13.
    Santulli G (2015) The adrenergic system in cardiovascular metabolism and aging. In: The cardiovascular adrenergic system. Springer, Cham. pp 97–116Google Scholar
  14. 14.
    Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G (2015) G-protein coupled receptor signaling in pluripotent stem cell-derived cardiovascular cells: implications for disease modeling. Front Cell Dev Biol 3:76Google Scholar
  15. 15.
    Woo AYH, Xiao R-P (2012) β-Adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacol Sin 33(3):335Google Scholar
  16. 16.
    Kamal FA, Travers JG, Blaxall BC (2012) G protein–coupled receptor kinases in cardiovascular disease: why “where” matters. Trends Cardiovasc Med 22(8):213–219Google Scholar
  17. 17.
    Kim YH, Oh SO, Kim CD (2016) Biased agonism of G protein–coupled receptors: a potential therapeutic strategy of cardiovascular diseases. Cardiovascular Pharmacology:Open Access 5(4): 1–7Google Scholar
  18. 18.
    Cresci S, Kelly RJ, Cappola TP, Diwan A, Dries D, Kardia SL, Dorn GW (2009) Clinical and genetic modifiers of long-term survival in heart failure. J Am Coll Cardiol 54(5):432–444Google Scholar
  19. 19.
    Biolo A, Clausell N, Santos KG, Salvaro R, Ashton-Prolla P, Borges A, Rohde LE (2008) Impact of β1-adrenergic receptor polymorphisms on susceptibility to heart failure, arrhythmogenesis, prognosis, and response to beta-blocker therapy. Am J Cardiol 102(6):726–732Google Scholar
  20. 20.
    Salazar NC, Chen J, Rockman HA (2007) Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta Biomembr 1768(4):1006–1018Google Scholar
  21. 21.
    Ciccarelli M, Sorriento D, Coscioni E, Iaccarino G, Santulli G (2017) Adrenergic receptors. In: Endocrinology of the heart in health and disease. Elsevier, pp 285–315Google Scholar
  22. 22.
    Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N (2013) Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 4:324Google Scholar
  23. 23.
    Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54(13):4283–4311Google Scholar
  24. 24.
    Santulli G, Iaccarino G (2016) Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 93:65–72Google Scholar
  25. 25.
    Stern CS, Lebowitz J (2010) Latest drug developments in the field of cardiovascular disease. Int J Angiol 19(03):e100–e105Google Scholar
  26. 26.
    Sarkhel S, Sharon A, Trivedi V, Maulik PR, Singh MM, Venugopalan P, Ray S (2003) Structure-based drug design: synthesis, crystal structure, biological evaluation and docking studies of mono-and bis-benzo [b] oxepines as non-steroidal estrogens. Bioorg Med Chem 11(23):5025–5033Google Scholar
  27. 27.
    Rengo G, Lymperopoulos A, Zincarelli C, Femminella G, Liccardo D, Pagano G, De Lucia C, Cannavo A, Gargiulo P, Ferrara N (2012) Blockade of β-adrenoceptors restores the GRK2-mediated adrenal α2-adrenoceptor–catecholamine production axis in heart failure. Br J Pharmacol 166(8):2430–2440Google Scholar
  28. 28.
    O’connell J (2000) The economic burden of heart failure. Clin Cardiol 23(S3):III6–III10Google Scholar
  29. 29.
    Siryk-Bathgate A, Dabul S, Lymperopoulos A (2013) Current and future G protein-coupled receptor signaling targets for heart failure therapy. Drug Des Devel Ther 7:1209Google Scholar
  30. 30.
    Manna M, Niemelä M, Tynkkynen J, Javanainen M, Kulig W, Müller DJ, Rog T, Vattulainen I (2016) Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol. Elife 5:e18432Google Scholar
  31. 31.
    Vasudevan NT, Mohan ML, Goswami SK, Prasad SVN (2011) Regulation of β-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle 10(21):3684–3691Google Scholar
  32. 32.
    Cannatà A, Marcon G, Cimmino G, Camparini L, Ciucci G, Sinagra G, Loffredo FS (2017) Role of circulating factors in cardiac aging. J Thorac Dis 9(Suppl 1):S17–S29Google Scholar
  33. 33.
    White DC, Hata JA, Shah AS, Glower DD, Lefkowitz RJ, Koch WJ (2000) Preservation of myocardial β-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc Natl Acad Sci 97(10):5428–5433Google Scholar
  34. 34.
    Park M, Steinberg SF (2018) Carvedilol prevents redox inactivation of cardiomyocyte Β1-adrenergic receptors. JACC Basic Transl Sci 3(4):521–532Google Scholar
  35. 35.
    Shin E, Ko KS, Rhee BD, Han J, Kim N (2014) Different effects of prolonged β-adrenergic stimulation on heart and cerebral artery. Integr Med Res 3(4):204–210Google Scholar
  36. 36.
    de Lucia C, Femminella GD, Gambino G, Pagano G, Allocca E, Rengo C, Silvestri C, Leosco D, Ferrara N, Rengo G (2014) Adrenal adrenoceptors in heart failure. Front Physiol 5:246Google Scholar
  37. 37.
    Strachan RT (2009) P90 ribosomal S6 kinase 2 (RSK2) directly phosphorylates the 5–HT2A serotonin receptor thereby modulating signaling. Case Western Reserve University (Thesis 42103)Google Scholar
  38. 38.
    Johnson J, Liggett S (2011) Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin Pharmacol Ther 89(3):366–378Google Scholar
  39. 39.
    Fajardo G, Zhao M, Urashima T, Farahani S, Hu D-Q, Reddy S, Bernstein D (2013) Deletion of the β2-adrenergic receptor prevents the development of cardiomyopathy in mice. J Mol Cell Cardiol 63:155–164Google Scholar
  40. 40.
    De Lucia C, Eguchi A, Koch WJ (2018) New insights in cardiac β-adrenergic signaling during heart failure and aging. Front Pharmacol 9:904Google Scholar
  41. 41.
    Jones SM, Hiller FC, Jacobi SE, Foreman SK, Pittman LM, Cornett LE (2003) Enhanced β 2-adrenergic receptor (β 2 AR) signaling by adeno-associated viral (AAV)-mediated gene transfer. BMC Pharmacol 3(1):15Google Scholar
  42. 42.
    Katritch V, Rueda M, Lam PCH, Yeager M, Abagyan R (2010) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins: Struct, Funct, Bioinf 78(1):197–211Google Scholar
  43. 43.
    Yuzlenko O, Kieć-Kononowicz K (2009) Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin-and β2-adrenergic-based homology models through the docking studies. J Comput Chem 30(1):14–32Google Scholar
  44. 44.
    Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK (2009) Structure-based discovery of β2-adrenergic receptor ligands. Proc Natl Acad Sci 106(16):6843–6848Google Scholar
  45. 45.
    Corbi G, Conti V, Russomanno G, Rengo G, Vitulli P, Ciccarelli AL, Filippelli A, Ferrara N (2012) Is physical activity able to modify oxidative damage in cardiovascular aging? Oxidative Med Cell Longev 2012:1–6Google Scholar
  46. 46.
    Samuel CS, Unemori EN, Mookerjee I, Bathgate RA, Layfield SL, Mak J, Tregear GW, Du X-J (2004) Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145(9):4125–4133Google Scholar
  47. 47.
    Stallaert W, Dorn JF, Van Der Westhuizen E, Audet M, Bouvier M (2012) Impedance responses reveal β2-adrenergic receptor signaling pluridimensionality and allow classification of ligands with distinct signaling profiles. PLoS One 7(1):e29420Google Scholar
  48. 48.
    Bernstein D, Fajardo G, Zhao M (2011) The role of β-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Prog Pediatr Cardiol 31(1):35–38Google Scholar
  49. 49.
    Zhu W, Petrashevskaya N, Ren S, Zhao A, Chakir K, Gao E, Chuprun JK, Wang Y, Talan M, Dorn GW (2012) Gi-biased β2AR signaling links GRK2 upregulation to heart failure novelty and significance. Circ Res 110(2):265–274Google Scholar
  50. 50.
    Cannavo A, Liccardo D, Koch WJ (2013) Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 4:264Google Scholar
  51. 51.
    Barrese V, Taglialatela M (2013) New advances in beta-blocker therapy in heart failure. Front Physiol 4:323Google Scholar
  52. 52.
    Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D, Bonaduce D (2014) β-Adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol 4:396Google Scholar
  53. 53.
    Rath G, Balligand J-L, Chantal D (2012) Vasodilatory mechanisms of beta receptor blockade. Curr Hypertens Rep 14(4):310–317Google Scholar
  54. 54.
    Lymperopoulos A, Rengo G, Koch WJ (2007) Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med 13(12):503–511Google Scholar
  55. 55.
    Xiang Y, Devic E, Kobilka B (2002) The PDZ binding motif of the β1 adrenergic receptor modulates receptor trafficking and signaling in cardiac myocytes. J Biol Chem 277(37):33783–33790Google Scholar
  56. 56.
    Zaugg M, Schaub MC (2008) β3-adrenergic receptor subtype signaling in senescent heart nitric oxide intoxication or “endogenous” β blockade for protection? Anesthesiology: The Journal of the American Society of Anesthesiologists, 109(6):956–959Google Scholar
  57. 57.
    Gao Z-G, Jacobson KA (2017) Purinergic signaling in mast cell degranulation and asthma. Front Pharmacol 8:947Google Scholar
  58. 58.
    Zhang W, Yano N, Deng M, Mao Q, Shaw SK, Tseng Y-T (2011) β-Adrenergic receptor-PI3K signaling crosstalk in mouse heart: elucidation of immediate downstream signaling cascades. PLoS One 6(10):e26581Google Scholar
  59. 59.
    Liggett SB (2001) β-Adrenergic receptors in the failing heart: the good, the bad, and the unknown. J Clin Invest 107(8):947–948Google Scholar
  60. 60.
    Lymperopoulos A, Negussie S (2013) βArrestins in cardiac G protein-coupled receptor signaling and function: partners in crime or “good cop, bad cop”? Int J Mol Sci 14(12):24726–24741Google Scholar
  61. 61.
    Cannavo A, Koch WJ (2017) Targeting β3-adrenergic receptors in the heart: selective agonism and β-blockade. J Cardiovasc Pharmacol 69(2):71–78Google Scholar
  62. 62.
    Penela P, Murga C, Ribas C, Tutor AS, Peregrín S, Mayor F Jr (2006) Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res 69(1):46–56Google Scholar
  63. 63.
    Kaufman BD, Shaddy RE (2007) Beta-adrenergic receptor blockade and pediatric dilated cardiomyopathy. Prog Pediatr Cardiol 24(1):51–57Google Scholar
  64. 64.
    Bernstein D (2018) Cardiovascular receptors and signaling in heart failure. In: Heart Failure in the Child and Young Adult. Elsevier, pp 21–31.Google Scholar
  65. 65.
    Rosmond R, Ukkola O, Chagnon M, Bouchard C, Björntorp P (2000) Polymorphisms of the β2-adrenergic receptor gene (ADRB2) in relation to cardiovascular risk factors in men. J Intern Med 248(3):239–244Google Scholar
  66. 66.
    Richter W, Day P, Agrawal R, Bruss MD, Granier S, Wang YL, Rasmussen SG, Horner K, Wang P, Lei T (2008) Signaling from β1-and β2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J 27(2):384–393Google Scholar
  67. 67.
    Bristow MR (2000) β-Adrenergic receptor blockade in chronic heart failure. Circulation 101(5):558–569Google Scholar
  68. 68.
    Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of β-adrenergic signaling in heart failure? Circ Res 93(10):896–906Google Scholar
  69. 69.
    Bristow M, Hershberger R, Port JD, Minobe W, Rasmussen R (1989) Beta 1-and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 35(3):295–303Google Scholar
  70. 70.
    Makaritsis K, Triposkiadis F (2015) Beta adrenergic receptors. In: Introduction to translational cardiovascular research. Springer, pp 73–89.Google Scholar
  71. 71.
    Kamal FA, Smrcka AV, Blaxall BC (2011) Taking the heart failure battle inside the cell: small molecule targeting of Gβγ subunits. J Mol Cell Cardiol 51(4):462–467Google Scholar
  72. 72.
    Zhang P, Mende U (2011) Regulators of G-protein signaling in the heart and their potential as therapeutic targets. Circ Res 109(3):320–333Google Scholar
  73. 73.
    Ciccarelli M, Santulli G, Pascale V, Trimarco B, Iaccarino G (2013) Adrenergic receptors and metabolism: role in development of cardiovascular disease. Front Physiol 4:265Google Scholar
  74. 74.
    Zhang Y, Matkovich SJ, Duan X, Gold JI, Koch WJ, Dorn GW II (2011) Nuclear effects of G-protein receptor kinase 5 on histone deacetylase 5–regulated gene transcription in heart failure. Gene Expr 4:659–668Google Scholar
  75. 75.
    Ho D, Yan L, Iwatsubo K, Vatner DE, Vatner SF (2010) Modulation of β-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5. Heart Fail Rev 15(5):495–512Google Scholar
  76. 76.
    Métayé T, Gibelin H, Perdrisot R, Kraimps J-L (2005) Pathophysiological roles of G-protein-coupled receptor kinases. Cell Signal 17(8):917–928Google Scholar
  77. 77.
    Grisanti LA, Schumacher SM, Tilley DG, Koch WJ (2018) Designer approaches for G protein–coupled receptor modulation for cardiovascular disease. JACC Basic Transl Sci 3(4):550–562Google Scholar
  78. 78.
    Franco A, Zhang L, Matkovich SJ, Kovacs A, Dorn GW II (2018) G-protein receptor kinases 2, 5 and 6 redundantly modulate smoothened-GATA transcriptional crosstalk in fetal mouse hearts. J Mol Cell Cardiol 121:60–68Google Scholar
  79. 79.
    Belmonte SL, Blaxall BC (2011) G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circ Res 109(3):309–319Google Scholar
  80. 80.
    Elorza A, Penela P, Sarnago S, Mayor F (2003) MAPK-dependent degradation of G protein-coupled receptor kinase 2. J Biol Chem 278(31):29164–29173Google Scholar
  81. 81.
    Nediani C, Formigli L, Perna A, Ibba-Manneschi L, Zecchi-Orlandini S, Fiorillo C, Ponziani V, Cecchi C, Liguori P, Fratini G (2000) Early changes induced in the left ventricle by pressure overload. An experimental study on swine heart. J Mol Cell Cardiol 32(1):131–142Google Scholar
  82. 82.
    Pfleger JM, Gross P, Johnson J, Gao E, Houser SR, Koch WJ (2018) G protein-coupled receptor kinase 2 impairs fatty acid metabolism in the failing heart through novel mechanisms. J Mol Cell Cardiol 124:100Google Scholar
  83. 83.
    Chen M, Sato PY, Chuprun JK, Peroutka RJ, Otis NJ, Ibetti J, Pan S, Sheu S–S, Gao E, Koch WJ (2013) Pro-death signaling of GRK2 in cardiac myocytes after ischemic stress occurs via ERK-dependent, Hsp90–mediated mitochondrial targeting. Circ Res. 112(8): 1121–1134Google Scholar
  84. 84.
    Walker J, Penn R, Hanania N, Dickey B, Bond R (2011) New perspectives regarding β2-adrenoceptor ligands in the treatment of asthma. Br J Pharmacol 163(1):18–28Google Scholar
  85. 85.
    Selvam B, Wereszczynski J, Tikhonova IG (2012) Comparison of dynamics of extracellular accesses to the β1 and β2 adrenoceptors binding sites uncovers the potential of kinetic basis of antagonist selectivity. Chem Biol Drug Des 80(2):215–226Google Scholar
  86. 86.
    Swaminath G, Lee TW, Kobilka B (2003) Identification of an allosteric binding site for Zn2+ on the β2 adrenergic receptor. J Biol Chem 278(1):352–356Google Scholar
  87. 87.
    Freddolino PL, Kalani MYS, Vaidehi N, Floriano WB, Hall SE, Trabanino RJ, Kam VWT, Goddard WA (2004) Predicted 3D structure for the human β2 adrenergic receptor and its binding site for agonists and antagonists. Proc Natl Acad Sci 101(9):2736–2741Google Scholar
  88. 88.
    Chan HS, Filipek S, Yuan S (2016) The principles of ligand specificity on beta-2-adrenergic receptor. Sci Rep 6:34736Google Scholar
  89. 89.
    Hatton R, Cvjeticanin A, Lymperopoulos A (2015) The adrenergic system of the adrenal glands as a remote control of cardiac function. J Cardiovasc Dis 5:394–397Google Scholar
  90. 90.
    Swaminath G, Deupi X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka B (2005) Probing the β2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J Biol Chem 280(23):22165–22171Google Scholar
  91. 91.
    Volovyk ZM, Wolf MJ, Prasad SVN, Rockman HA (2006) Agonist-stimulated β-adrenergic receptor internalization requires dynamic cytoskeletal actin turnover. J Biol Chem 281:9773–9780Google Scholar
  92. 92.
    Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, Kaur H, Eguchi S, Sakaguchi T, Ishihama S (2017) Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med 214(7):1877–1888Google Scholar
  93. 93.
    Sato M (2013) Roles of accessory proteins for heterotrimeric G-protein in the development of cardiovascular diseases. Circ J 77(10):2455–2461Google Scholar
  94. 94.
    Hernandez AF, Hammill BG, O’Connor CM, Schulman KA, Curtis LH, Fonarow GC (2009) Clinical effectiveness of beta-blockers in heart failure: findings from the OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure) Registry. J Am Coll Cardiol 53(2):184–192Google Scholar
  95. 95.
    Albouaini K, Andron M, Alahmar A, Egred M (2007) Beta-blockers use in patients with chronic obstructive pulmonary disease and concomitant cardiovascular conditions. Int J Chron Obstruct Pulmon Dis 2(4):535–540Google Scholar
  96. 96.
    Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M, Lubsen J, Lutiger B, Metra M, Remme WJ (2003) Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362(9377):7–13Google Scholar
  97. 97.
    Kang M, Chung KY, Walker JW (2007) G-protein coupled receptor signaling in myocardium: not for the faint of heart. Physiology 22(3):174–184Google Scholar
  98. 98.
    Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, Diwan A, Martini JS, Sparks L, Parekh RR (2008) A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nat Med 14(5):510–517Google Scholar
  99. 99.
    Petrie MC, Padmanabhan N, McDonald JE, Hillier C, Connell JM, McMurray JJ (2001) Angiotensin converting enzyme (ACE) and non-ACE dependent angiotensin II generation in resistance arteries from patients with heart failure and coronary heart disease. J Am Coll Cardiol 37(4):1056–1061Google Scholar
  100. 100.
    Hawkins NM, Petrie MC, Jhund PS, Chalmers GW, Dunn FG, McMurray JJ (2009) Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur J Heart Fail 11(2):130–139Google Scholar
  101. 101.
    Rutten FH, Cramer MJM, Lammers JWJ, Grobbee DE, Hoes AW (2006) Heart failure and chronic obstructive pulmonary disease: an ignored combination? Eur J Heart Fail 8(7):706–711Google Scholar
  102. 102.
    Gattis WA, O’Connor CM, Gallup DS, Hasselblad V, Gheorghiade M (2004) Predischarge initiation of carvedilol in patients hospitalized for decompensated heart failure: results of the Initiation Management Predischarge: Process for Assessment of Carvedilol Therapy in Heart Failure (IMPACT-HF) trial. J Am Coll Cardiol 43(9):1534–1541Google Scholar
  103. 103.
    Lindholm LH, Carlberg B, Samuelsson O (2005) Should β blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet 366(9496):1545–1553Google Scholar
  104. 104.
    Pose-Reino A, Pena-Seijo M (2007) Should beta-blockers remain first choice in the treatment of primary hypertension? Med Clin 129(19):733–735Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Daniel Chikere Ali
    • 1
  • Muhammad Naveed
    • 2
  • Andrew Gordon
    • 3
  • Fatima Majeed
    • 4
  • Muhammad Saeed
    • 5
  • Michael I. Ogbuke
    • 6
  • Muhammad Atif
    • 7
  • Hafiz Muhammad Zubair
    • 8
  • Li Changxing
    • 9
    Email author
  1. 1.Department of Microbiological and Biochemical Pharmacy, School of Life ScienceChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Department of Clinical Pharmacology, School of PharmacyNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Department of Pharmacognosy, School of PharmacyChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  4. 4.Department of Nutrition and Food Hygiene, School of Public HealthNanjing Medical UniversityNanjingPeople’s Republic of China
  5. 5.Faculty of Animal Production and TechnologyThe Cholistan University of Veterinary and Animal SciencesPunjab ProvincePakistan
  6. 6.Department of Pharmacy, School of Pharmacy, China Pharmaceutical UniversityNanjingPeople’s Republic of China
  7. 7.Faculty of Pharmacy and Alternative MedicineThe Islamia University of BahawalpurBahawalpurPakistan
  8. 8.Department of Pharmacology, School of Basic Medical SciencesNanjing Medical UniversityNanjingPeople’s Republic of China
  9. 9.Department of Human AnatomyMedical College of Qinghai UniversityXiningPeople’s Republic of China

Personalised recommendations