Re-evaluating the causes and consequences of non-resolving inflammation in chronic cardiovascular disease

  • Amanda B. Pullen
  • Jeevan Kumar Jadapalli
  • Boutayna Rhourri-Frih
  • Ganesh V. HaladeEmail author


Cardiac injuries, like heart attacks, drive the secondary pathology with advanced heart failure. In this process, non-resolving inflammation is a prime component of accelerated cardiovascular disease and subsequent fatal events associated with imbalanced diet, physical inactivity, disrupted circadian rhythms, neuro-hormonal stress, and poly- or co-medication. Laboratory rodents have established that splenic leukocyte–directed resolution mechanisms are essential for cardiac repair after injury. Here, we discuss the impact of three lifestyle-related factors that are prime causes of derailed cardiac healing, putative non-resolving inflammation-resolution mechanisms in cardiovascular diseases, and progressive heart failure after cardiac injury. The presented review resurfaces the lifestyle-related risks and future research directions required to understand the molecular and cellular mechanisms between the causes of cardiovascular disease and their related consequences of non-resolving inflammation.


Cardiovascular disease Chronic inflammation Cardiac repair Heart failure Leukocytes 


Funding information

This work was supported by National Institutes of Health (AT006704 and HL132989) and The University of Alabama at Birmingham (UAB) Pittman scholar award to G.V.H.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10741_2019_9817_MOESM1_ESM.docx (301 kb)
ESM 1 (DOCX 301 kb)
10741_2019_9817_MOESM2_ESM.docx (21 kb)
ESM 2 (DOCX 20 kb)


  1. 1.
    Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, Jaarsma T, Krum H, Rastogi V, Rohde LE, Samal UC, Shimokawa H, Budi Siswanto B, Sliwa K, Filippatos G (2014) Heart failure: preventing disease and death worldwide. ESC Heart Fail 1(1):4–25CrossRefPubMedGoogle Scholar
  2. 2.
    Nabeebaccus A, Zheng S, Shah AM (2016) Heart failure—potential new targets for therapy. Br Med Bull 119(1):99–110CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Driscoll A, Meagher S, Kennedy R, Hay M, Banerji J, Campbell D, Cox N, Gascard D, Hare D, Page K, Nadurata V, Sanders R, Patsamanis H (2016) What is the impact of systems of care for heart failure on patients diagnosed with heart failure: a systematic review. BMC Cardiovasc Disord 16:195CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    A AO, Shah SJ (2015) Diagnosis and management of heart failure with preserved ejection frac-tion: 10 key lessons. Curr Cardiol Rev 11(1):42–52PubMedCentralGoogle Scholar
  5. 5.
    Inamdar AA, Inamdar AC (2016) Heart failure: diagnosis, management and utilization. J Clin Med 5(7):62CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Delp MD, Charvat JM, Limoli CL, Globus RK, Ghosh P (2016) Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Sci Rep 6:29901CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ade CJ et al (2017) Incidence rate of cardiovascular disease end points in the National Aeronautics and Space Administration Astronaut Corps. J Am Heart Assoc 6(8):e005564CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ross R (1986) The pathogenesis of atherosclerosis--an update. N Engl J Med 314(8):488–500CrossRefPubMedGoogle Scholar
  9. 9.
    Tromp J, MacDonald MR, Tay WT, Teng THK, Hung CL, Narasimhan C, Shimizu W, Ling LH, Ng TP, Yap J, McMurray JJV, Zile MR, Richards AM, Anand IS, Lam CSP (2018) Heart failure with preserved ejection fraction in the young. Circulation 138(24):2763–2773CrossRefPubMedGoogle Scholar
  10. 10.
    Halade GV, Kain V (2017) Obesity and cardiometabolic defects in heart failure pathology. Compr Physiol 7(4):1463–1477CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tourki B, Halade GV (2018) The failing of the obesity paradox in the failing heart. Am J Physiol Heart Circ Physiol 315:H1353–H1355CrossRefGoogle Scholar
  12. 12.
    Westphal JG, Rigopoulos AG, Bakogiannis C, Ludwig SE, Mavrogeni S, Bigalke B, Doenst T, Pauschinger M, Tschöpe C, Schulze PC, Noutsias M (2017) The MOGE(S) classification for cardiomyopathies: current status and future outlook. Heart Fail Rev 22(6):743–752CrossRefPubMedGoogle Scholar
  13. 13.
    Arbustini E, Narula N, Dec GW, Reddy KS, Greenberg B, Kushwaha S, Marwick T, Pinney S, Bellazzi R, Favalli V, Kramer C, Roberts R, Zoghbi WA, Bonow R, Tavazzi L, Fuster V, Narula J (2013) The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the World Heart Federation. J Am Coll Cardiol 62(22):2046–2072CrossRefPubMedGoogle Scholar
  14. 14.
    Segovia Cubero J et al (2004) Heart failure: etiology and approach to diagnosis. Rev Esp Cardiol (English Edition) 57(03):250–259Google Scholar
  15. 15.
    Follath F (2001) Ischemic versus non-ischemic heart failure: should the etiology be determined? Heart Fail Monit 1(4):122–125PubMedGoogle Scholar
  16. 16.
    Van Linthout S, Tschöpe C (2017) Inflammation – cause or consequence of heart failure or both? Curr Heart Fail Rep 14(4):251–265CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, Epstein SE (2016) Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67(17):2050–2060CrossRefPubMedGoogle Scholar
  18. 18.
    Dick SA, Epelman S (2016) Chronic heart failure and inflammation: what do we really know? Circ Res 119(1):159–176CrossRefPubMedGoogle Scholar
  19. 19.
    Yndestad A, Kristian Damås J, Øie E, Ueland T, Gullestad L, Aukrust P (2006) Systemic inflammation in heart failure--the whys and wherefores. Heart Fail Rev 11(1):83–92CrossRefPubMedGoogle Scholar
  20. 20.
    Sansbury BE, Spite M (2016) Resolution of acute inflammation and the role of resolvins in immunity, thrombosis and vascular biology. Circ Res 119(1):113–130CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kain V, Prabhu SD, Halade GV (2014) Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol 109(6):444CrossRefPubMedGoogle Scholar
  22. 22.
    Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lopez EF, Kabarowski JH, Ingle KA, Kain V, Barnes S, Crossman DK, Lindsey ML, Halade GV (2015) Obesity superimposed on aging magnifies inflammation and delays the resolving response after myocardial infarction. Am J Physiol Heart Circ Physiol 308(4):H269–H280CrossRefPubMedGoogle Scholar
  24. 24.
    Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439CrossRefPubMedGoogle Scholar
  25. 25.
    Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838):666–670CrossRefPubMedGoogle Scholar
  26. 26.
    Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8(4):279–289CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN (1997) Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem 272(11):6972–6978CrossRefPubMedGoogle Scholar
  28. 28.
    Shih H et al (2010) The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol 57(1):9–17CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Woulfe KC, Bruns DR (2018) From pediatrics to geriatrics: mechanisms of heart failure across the life-course. J Mol Cell Cardiol 126:70–76CrossRefPubMedGoogle Scholar
  30. 30.
    Halade GV, Kain V, Black LM, Prabhu SD, Ingle KA (2016) Aging dysregulates D- and E-series resolvins to modulate cardiosplenic and cardiorenal network following myocardial infarction. Aging 8(11):2611–2634CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dzau V, Braunwald E (1991) Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 121(4 Pt 1):1244–1263CrossRefPubMedGoogle Scholar
  32. 32.
    Halade GV, Kain V, Ingle KA (2018) Heart functional and structural compendium of cardiosplenic and cardiorenal networks in acute and chronic heart failure pathology. Am J Physiol Heart Circ Physiol 314(2):H255–h267CrossRefPubMedGoogle Scholar
  33. 33.
    Halade GV et al (2018) Splenic leukocytes define the resolution of inflammation in heart failure. Sci Signal 11(520):eaao1818CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kain V, Ingle KA, Colas RA, Dalli J, Prabhu SD, Serhan CN, Joshi M, Halade GV (2015) Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J Mol Cell Cardiol 84:24–35CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Halade GV, Kain V, Serhan CN (2018) Immune responsive resolvin D1 programs myocardial infarction-induced cardiorenal syndrome in heart failure. FASEB J 32(7):3717–3729CrossRefPubMedGoogle Scholar
  36. 36.
    Jadapalli JK, Halade GV (2018) Unified nexus of macrophages and maresins in cardiac reparative mechanisms. FASEB J 32(10):5227–5237CrossRefPubMedGoogle Scholar
  37. 37.
    Halade GV, Kain V, Tourki B, Jadapalli JK (2019) Lipoxygenase drives Lipidomic and metabolic reprogramming in ischemic heart failure. Metabolism 96:22–32CrossRefGoogle Scholar
  38. 38.
    Kain V, Ingle KA, Kabarowski J, Barnes S, Limdi NA, Prabhu SD, Halade GV (2018) Genetic deletion of 12/15 lipoxygenase promotes effective resolution of inflammation following myocardial infarction. J Mol Cell Cardiol 118:70–80CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Halade GV, Kain V, Ingle KA, Prabhu SD (2017) Interaction of 12/15-lipoxygenase with fatty acids alters the leukocyte kinetics leading to improved postmyocardial infarction healing. Am J Physiol Heart Circ Physiol 313(1):H89–h102CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Neckar J et al (2019) Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive rats. Clin Sci (Lond) 133(8):939–951CrossRefGoogle Scholar
  41. 41.
    Neckar J et al (2018) Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-1alpha via downregulation of prolyl hydroxylase 3. Am J Physiol Heart Circ Physiol 315(5):H1148–h1158CrossRefPubMedGoogle Scholar
  42. 42.
    Brake R, Jones ID (2017) Chronic heart failure part 1: pathophysiology, signs and symptoms. Nurs Stand 31(19):54–63CrossRefPubMedGoogle Scholar
  43. 43.
    Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L, Hilfiker-Kleiner D, Janssens S, Latini R, Neubauer G, Paulus WJ, Pieske B, Ponikowski P, Schroen B, Schultheiss HP, Tschöpe C, van Bilsen M, Zannad F, McMurray J, Shah AM (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11(2):119–129CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81(3):474–481CrossRefPubMedGoogle Scholar
  45. 45.
    Altabas V (2015) Diabetes, endothelial dysfunction, and vascular repair: what should a diabetologist keep his eye on? Int J Endocrinol 2015:14CrossRefGoogle Scholar
  46. 46.
    Burr, G.O. and M.M. Burr, Nutrition classics from The Journal of Biological Chemistry 82:345-67, 1929. A new deficiency disease produced by the rigid exclusion of fat from the diet. Nutr Rev, 1973 31(8): p. 248–249Google Scholar
  47. 47.
    Hu S et al (2018) Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell Metab 28(3):415–431.e4CrossRefPubMedGoogle Scholar
  48. 48.
    Kain V et al (2019) Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophil:lymphocyte ratio, leading to inflamed milieu in acute heart failure. Faseb j:fj201802477RGoogle Scholar
  49. 49.
    Kain V, Ingle KA, Kachman M, Baum H, Shanmugam G, Rajasekaran NS, Young ME, Halade GV (2018) Excess omega-6 fatty acids influx in aging drives metabolic dysregulation, electrocardiographic alterations, and low-grade chronic inflammation. Am J Physiol Heart Circ Physiol 314(2):H160–h169CrossRefPubMedGoogle Scholar
  50. 50.
    Halade GV, el Jamali A, Williams PJ, Fajardo RJ, Fernandes G (2011) Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp Gerontol 46(1):43–52CrossRefPubMedGoogle Scholar
  51. 51.
    Kain V, Halade GV (2017) Metabolic and biochemical stressors in diabetic cardiomyopathy. Front Cardiovasc Med 4:31CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nuttall FQ (2015) Body mass index: obesity, BMI, and health a critical review. Nutr Today 50(3):117–128CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lai M, Chandrasekera PC, Barnard ND (2014) You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes 4(9):e135CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Obesity and overweight. 2016 [Cited 2018; World Health Organization (WHO)]. Available from: Accessed 24 March 2019
  55. 55.
    International Diabetes Federation. 2012 [cited 2018; 5th Edition]. Available from: Accessed 24 March 2019
  56. 56.
    DiNicolantonio JJ, O’Keefe JH (2017) Good fats versus bad fats: a comparison of fatty acids in the promotion of insulin resistance, inflammation, and obesity. Mo Med 114(4):303–307PubMedPubMedCentralGoogle Scholar
  57. 57.
    Russo, L. and C.N. Lumeng, Properties and functions of adipose tissue macrophages in obesity. Immunology. 0(ja)Google Scholar
  58. 58.
    Dadvar S, Ferreira DMS, Cervenka I, Ruas JL (2018) The weight of nutrients: kynurenine metabolites in obesity and exercise. J Intern Med 284(5):519–533CrossRefPubMedGoogle Scholar
  59. 59.
    Westerterp KR, Speakman JR (2008) Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int J Obes 32:1256–1263CrossRefGoogle Scholar
  60. 60.
    Haslam DW, James WPT (2005) Obesity. Lancet 366(9492):1197–1209CrossRefPubMedGoogle Scholar
  61. 61.
    Carvalheira JBC, Qiu Y, Chawla A (2013) Blood spotlight on leukocytes and obesity. Blood 122(19):3263–3267CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hower IM, Harper SA, Buford TW (2018) Circadian rhythms, exercise, and cardiovascular health. J Circadian Rhythms 16:7CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee DC, Earnest CP, Church TS, O’Keefe JH, Milani RV, Blair SN (2015) Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res 117(2):207–219CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    O’Keefe JH, O’Keefe EL, Lavie CJ (2018) The Goldilocks Zone for exercise: not too little, Not Too Much. Mo Med 115(2):98–105PubMedPubMedCentralGoogle Scholar
  65. 65.
    Díaz BB, González DA, Gannar F, Pérez MCR, de León AC (2018) Myokines, physical activity, insulin resistance and autoimmune diseases. Immunol Lett 203:1–5CrossRefPubMedGoogle Scholar
  66. 66.
    Eijsvogels TMH, Thompson PD, Franklin BA (2018) The “extreme exercise hypothesis”: recent findings and cardiovascular health implications. Curr Treat Options Cardiovasc Med 20(10):84CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465CrossRefPubMedGoogle Scholar
  68. 68.
    Lavie CJ, Johannsen N, Swift D, Sénéchal M, Earnest C, Church T, Hutber A, Sallis R, Blair SN (2014) Exercise is medicine – the importance of physical activity, exercise training, cardiorespiratory fitness and obesity in the prevention and treatment of type 2 diabetes. Eur Endocrinol 10(1):18–22CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Fletcher GF, Landolfo C, Niebauer J, Ozemek C, Arena R, Lavie CJ (2018) Promoting physical activity and exercise: JACC health promotion series. J Am Coll Cardiol 72(14):1622–1639CrossRefPubMedGoogle Scholar
  70. 70.
    Cattadori G et al (2017) Exercise and heart failure: an update. ESC Heart Fail 5(2):222–232CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Brinker SK et al (2014) Association of cardiorespiratory fitness with left ventricular remodeling and diastolic function: the Cooper Center Longitudinal Study. JACC Heart Fail 2(3):238–246CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    León-Latre M et al (2014) Sedentary lifestyle and its relation to cardiovascular risk factors, insulin resistance and inflammatory profile. Rev Esp Cardiol (English Edition) 67(06):449–455Google Scholar
  73. 73.
    Morrison BN, McKinney J, Isserow S, Lithwick D, Taunton J, Nazzari H, de Souza AM, Heilbron B, Cater C, MacDonald M, Hives BA, Warburton DER (2018) Assessment of cardiovascular risk and preparticipation screening protocols in masters athletes: the Masters Athlete Screening Study (MASS): a cross-sectional study. BMJ Open Sport Exerc Med 4(1):e000370CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Peake JM, Neubauer O, Walsh NP, Simpson RJ (2017) Recovery of the immune system after exercise. J Appl Physiol 122(5):1077–1087CrossRefPubMedGoogle Scholar
  75. 75.
    Jamurtas AZ, Fatouros IG, Deli CK, Georgakouli K, Poulios A, Draganidis D, Papanikolaou K, Tsimeas P, Chatzinikolaou A, Avloniti A, Tsiokanos A, Koutedakis Y (2018) The effects of acute low-volume HIIT and aerobic exercise on leukocyte count and redox status. J Sports Sci Med 17(3):501–508PubMedPubMedCentralGoogle Scholar
  76. 76.
    Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, Peden BW, Thompson EG, Ammons BJ, Bray MS, Chatham JC, Wende AR, Yang Q, Chow CW, Martino TA, Gamble KL (2014) Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythm 29(4):257–276CrossRefGoogle Scholar
  77. 77.
    Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the CLOCK components CLOCK and BMAL1 leads to hypoinsulinemia and diabetes. Nature 466(7306):627–631CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wang XS et al (2011) Shift work and chronic disease: the epidemiological evidence. Occup Med (Oxford, England) 61(2):78–89CrossRefGoogle Scholar
  79. 79.
    Ingle KA, Kain V, Goel M, Prabhu SD, Young ME, Halade GV (2015) Cardiomyocyte-specific Bmal1 deletion in mice triggers diastolic dysfunction, extracellular matrix response, and impaired resolution of inflammation. Am J Physiol Heart Circ Physiol 309(11):H1827–H1836CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Colas RA, Souza PR, Walker ME, Burton M, Zasłona Z, Curtis AM, Marques RM, Dalli J (2018) Impaired production and diurnal regulation of vascular RvDn-3 DPA increase systemic inflammation and cardiovascular disease. Circ Res 122(6):855–863CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106(11):4453–4458CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Hermansson J, Hallqvist J, Karlsson B, Knutsson A, Gillander Gådin K (2018) Shift work, parental cardiovascular disease and myocardial infarction in males. Occup Med 68(2):120–125CrossRefGoogle Scholar
  83. 83.
    Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T (2014) A circadian Clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of <em>Ccl2</em> expression. J Immunol 192(1):407–417CrossRefPubMedGoogle Scholar
  84. 84.
    Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13:190–198CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Turek FW et al (2005) Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice. Science (New York, N.Y.) 308(5724):1043–1045CrossRefGoogle Scholar
  86. 86.
    Abu Farha R (2018) And E. Alefishat, Shift work and the risk of cardiovascular diseases and metabolic syndrome among Jordanian employees. Oman Med J 33(3):235–242CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Poggiogalle E, Jamshed H, Peterson CM (2018) Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 84:11–27CrossRefPubMedGoogle Scholar
  88. 88.
    Wirtz PH, von Känel R (2017) Psychological stress, inflammation, and coronary heart disease. Curr Cardiol Rep 19(11):111CrossRefPubMedGoogle Scholar
  89. 89.
    (CSHS), C.f.S.o.H.S. Acute vs Chronic Stress. 2017 [05/17/2019]; Available from: Accessed 24 March 2019
  90. 90.
    Lagraauw HM, Kuiper J, Bot I (2015) Acute and chronic psychological stress as risk factors for cardiovascular disease: insights gained from epidemiological, clinical and experimental studies. Brain Behav Immun 50:18–30CrossRefPubMedGoogle Scholar
  91. 91.
    Dimsdale JE (2008) Psychological stress and cardiovascular disease. J Am Coll Cardiol 51(13):1237–1246CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Slopen N, Glynn RJ, Buring JE, Lewis TT, Williams DR, Albert MA (2012) Job strain, job insecurity, and incident cardiovascular disease in the Women’s Health Study: results from a 10-year prospective study. PLoS One 7(7):e40512–e40512CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kivimäki M, Kawachi I (2015) Work stress as a risk factor for cardiovascular disease. Curr Cardiol Rep 17(9):630–630CrossRefPubMedGoogle Scholar
  94. 94.
    Cohen BE, Edmondson D, Kronish IM (2015) State of the art review: depression, stress, anxiety, and cardiovascular disease. Am J Hypertens 28(11):1295–1302CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhang L, Piña IL (2019) Stress-induced cardiomyopathy. Heart Fail Clin 15(1):41–53CrossRefPubMedGoogle Scholar
  96. 96.
    Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschöpe C, Schultheiss HP, Laney CA, Rajan L, Michels G, Pfister R, Ukena C, Böhm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KEJ, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Lüscher TF (2015) Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med 373(10):929–938CrossRefPubMedGoogle Scholar
  97. 97.
    Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15(8):551–567CrossRefPubMedGoogle Scholar
  98. 98.
    Heinz J, Marinello M, Fredman G (2017) Pro-resolution therapeutics for cardiovascular diseases. Prostaglandins Other Lipid Mediat 132:12–16CrossRefPubMedGoogle Scholar
  99. 99.
    Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LAJ, Perretti M, Rossi AG, Wallace JL (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21(2):325–332CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Serhan CN (2017) Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 31(4):1273–1288CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Bronzato S, Durante A (2018) Dietary supplements and cardiovascular diseases. Int J Prev Med 9:80–80CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Goel A, Pothineni N, Singhal M, Paydak H, Saldeen T, Mehta J (2018) Fish, fish oils and cardioprotection: promise or fish tale? Int J Mol Sci 19(12):3703CrossRefPubMedCentralGoogle Scholar
  105. 105.
    Halade GV, Williams PJ, Lindsey ML, Fernandes G (2011) Fish oil decreases inflammation and reduces cardiac remodeling in rosiglitazone treated aging mice. Pharmacol Res 63(4):300–307CrossRefPubMedGoogle Scholar
  106. 106.
    Kain V, Halade GV (2019) Immune responsive resolvin D1 programs peritoneal macrophages and cardiac fibroblast phenotypes in diversified metabolic microenvironment. J Cell Physiol 234(4):3910–3920CrossRefPubMedGoogle Scholar
  107. 107.
    Aggarwal M, Bozkurt B, Panjrath G, Aggarwal B, Ostfeld RJ, Barnard ND, Gaggin H, Freeman AM, Allen K, Madan S, Massera D, Litwin SE, American College of Cardiology’s Nutrition and Lifestyle Committee of the Prevention of Cardiovascular Disease Council (2018) Lifestyle modifications for preventing and treating heart failure. J Am Coll Cardiol 72(19):2391–2405CrossRefPubMedGoogle Scholar
  108. 108.
    Salive ME (2013) Multimorbidity in older adults. Epidemiol Rev 35:75–83CrossRefPubMedGoogle Scholar
  109. 109.
    Forman DE, Maurer MS, Boyd C, Brindis R, Salive ME, Horne FMF, Bell SP, Fulmer T, Reuben DB, Zieman S, Rich MW (2018) Multimorbidity in older adults with cardiovascular disease. J Am Coll Cardiol 71(19):2149–2161CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Leelakanok N et al (2017) Association between polypharmacy and death: a systematic review and meta-analysis. J Am Pharm Assoc (2003) 57(6):729–738.e10CrossRefGoogle Scholar
  111. 111.
    Arfè A et al (2016) Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. BMJ 354Google Scholar
  112. 112.
    Huang SP et al (2018) Nonsteroidal anti-inflammatory drugs and risk of first hospitalization for heart failure in patients with no history of heart failure: a population-based case-crossover study. Drug SafGoogle Scholar
  113. 113.
    Rotunno R et al (2018) NSAIDs and heart failure: a dangerous relationship. Monaldi Arch Chest Dis 88(2):950CrossRefPubMedGoogle Scholar
  114. 114.
    Halade GV, Kain V, Wright GM, Jadapalli JK (2018) Subacute treatment of carprofen facilitate splenocardiac resolution deficit in cardiac injury. J Leukoc Biol 104:1173–1186CrossRefPubMedGoogle Scholar
  115. 115.
    Ridker PM, Everett BM, Thuren T, MacFadyen J, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131CrossRefPubMedGoogle Scholar
  116. 116.
    McNeil JJ et al (2018) Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N Engl J Med 379(16):1509–1518CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Dong J, Chen H (2018) Cardiotoxicity of anticancer therapeutics. Front Cardiovasc Med 5:9CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Jadapalli JK et al (2018) Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters inflammation-resolution program in the myocardium. Am J Physiol Heart Circ PhysiolGoogle Scholar
  119. 119.
    Linhart A, Belohlavek J Type 2 diabetes mellitus and heart failure. Vnitr Lek 62(7–8):592–597Google Scholar
  120. 120.
    Waksman J, Taylor RN Jr, Bodor GS, Daly FFS, Jolliff HA, Dart RC (2001) Acute myocardial infarction associated with amphetamine use. Mayo Clin Proc 76(3):323–326CrossRefPubMedGoogle Scholar
  121. 121.
    Smedra A, Szustowski S, Berent J (2015) Amphetamine-related myocardial infarction in a 42-year old man. Arch Med Sadowej Kryminol 65(3):173–181PubMedGoogle Scholar
  122. 122.
    Valgimigli, M. 2018. The remarkable story of a wonder drug, which now comes to an end in the primary prevention setting: say bye-bye to aspirin!. Eur Heart JGoogle Scholar
  123. 123.
    McNeil, J.J., et al. 2018. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J MedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine, Division of Cardiovascular DiseaseThe University of Alabama at BirminghamBirminghamUSA
  2. 2.Chimie et Biologie des Membranes et NanoobjetsUniversity of BordeauxBordeauxFrance

Personalised recommendations