Advertisement

Heart Failure Reviews

, Volume 24, Issue 6, pp 977–987 | Cite as

Cardio-oncology, the myth of Sisyphus, and cardiovascular disease in breast cancer survivors

  • Sophie I. MavrogeniEmail author
  • Elisa Sfendouraki
  • George Markousis-Mavrogenis
  • Angelos Rigopoulos
  • Michel Noutsias
  • Genovefa Kolovou
  • Constantina Angeli
  • Dimitrios Tousoulis
Article

Abstract

The number of breast cancer (BC) survivors has been increasing lately, due to the improvement in early detection strategies and oncological treatments. However, BC survivors are 3 times as likely to develop heart failure (HF) within 5 years of cancer diagnosis, and 7/100 of them will develop HF in a median follow-up of 8.5 years. Furthermore, HF in BC survivors has a worse prognosis compared to other causes of HF. Anthracyclines and trastuzumab have been proven to improve survival. However, they are also considered as the main causative factors of HF in BC survivors. Old patients, those with a pre-existing cardiovascular (CV) risk factors/disease, prior exposure to chemotherapy and radiotherapy are at increased risk. Serial evaluation of troponins and cardiac imaging parameters using echocardiography and cardiovascular magnetic resonance can significantly contribute to the early diagnosis of cardiac involvement before overt HF will develop. Assessment and immediate treatment of traditional CV risk factors is the first step for cardiotoxicity prevention. In BC survivors with known heart disease, the clinical stabilization is strongly recommended for cardiotoxicity prevention. Finally, in high-risk CV patients, primary prevention including cardioprotectants and/or CV drugs should be applied. According to recent studies, the early start of ACE inhibitors and β-blockers and the modification of anti-cancer treatment can prevent the decline in left ventricular ejection fraction. However, further multicenter studies are needed to establish both prevention and treatment protocols to successfully overcome HF development in BC survivors.

Keywords

Anti-cancer treatment Cardiotoxicity Heart failure β-Blockers ACE inhibitors 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, Dent S, Kondapalli L, Ky B, Okwuosa T, Piña IL, Volgman AS, American Heart Association Cardiovascular Disease in Women and Special Populations Committee of the Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes Research (2018) Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation 137(8):e30–e66PubMedPubMedCentralGoogle Scholar
  2. 2.
    Galán-Arriola C, Lobo M, Vílchez-Tschischke JP, López GJ, de Molina-Iracheta A, Pérez-Martínez C, Agüero J, Fernández-Jiménez R, Martín-García A, Oliver E, Villena-Gutierrez R, Pizarro G, Sánchez PL, Fuster V, Sánchez-González J, Ibanez B (2019) Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol 73(7):779–791PubMedGoogle Scholar
  3. 3.
    Chatterjee K, Zhang J, Honbo N, Karliner JS (2010) Doxorubicin cardiomyopathy. Cardiology. 115(2):155–162PubMedGoogle Scholar
  4. 4.
    Westphal JG, Rigopoulos AG, Bakogiannis C, Ludwig SE, Mavrogeni S, Bigalke B, Doenst T, Pauschinger M, Tschöpe C, Schulze PC, Noutsias M (2017) The MOGE(S) classification for cardiomyopathies: current status and future outlook. Heart Fail Rev 22(6):743–752PubMedGoogle Scholar
  5. 5.
    Sardaro A, Petruzzelli MF, D'Errico MP, Grimaldi L, Pili G, Portaluri M (2012) Radiation-induced cardiac damage in early left breast cancer patients: risk factors, biological mechanisms, radiobiology, and dosimetric constraints. Radiother Oncol 103:133–142PubMedGoogle Scholar
  6. 6.
    Lenihan D (2017) Cardio-oncology: what is the best practice we can all strivre for? Int J Cardiol 241:393–394PubMedGoogle Scholar
  7. 7.
    Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mohty D, Piepoli MF, Tamargo J, Torbicki A, Suter TM, Zamorano JL, Aboyans V, Achenbach S, Agewall S, Badimon L, Barón-Esquivias G, Baumgartner H, Bax JJ, Bueno H, Carerj S, Dean V, Erol Ç, Fitzsimons D, Gaemperli O, Kirchhof P, Kolh P, Lancellotti P, Lip GYH, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Roffi M, Torbicki A, Vaz Carneiro A, Windecker S, Authors/Task Force Members, ESC Committee for Practice Guidelines (CPG), Document Reviewers (2017) 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur J Heart Fail 19:9–42PubMedGoogle Scholar
  8. 8.
    Fradley MG, Brown AC, Shields B et al (2017) Developing a comprehensive cardio-oncology program at a cancer institute: the Moffit cancer center experience. Oncol Rev 11:340PubMedPubMedCentralGoogle Scholar
  9. 9.
    Barros-Gomez S, Herrmann J, Mulvagh SL et al (2016) Rationale for setting up a cardio-oncology unit: our experience at Mayo Clinic. Cardio-Oncology 2:5Google Scholar
  10. 10.
    Barac A, Murthag G, Carver JR et al (2015) Cardiovascular health of patients with cancer and cancer survivors. J Am Coll Cardiol 65:2739–2746PubMedPubMedCentralGoogle Scholar
  11. 11.
    Andreopoulou E, Gaiotti D, Kim E, Volm M, Oratz R, Freedberg R, Downey A, Vogel CL, Chia S, Muggia F (2007) Feasibility and cardiac safety of pegylated liposomal doxorubicin plus trastuzumab in heavily pretreated patients with recurrent HER2-overexpressing metastatic breast cancer. Clin Breast Cancer 7(9):690–696PubMedGoogle Scholar
  12. 12.
    Hamo CE, Bloom MW, Cardinale D et al (2016) Cancer therapy-related cardiac dysfunction and heart failure: part 2: prevention, treatment, guidelines, and future directions. Circ Heart Fail 9:e002843PubMedPubMedCentralGoogle Scholar
  13. 13.
    Guenancia C, Lefevbvre A, Cardinale D et al (2016) Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: a systematic review and meta-analysis. J Clin Oncol 34:3157–3165PubMedPubMedCentralGoogle Scholar
  14. 14.
    Christenson ES, James T, Agrawal V, Park BH (2015) Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem 48:223–235PubMedGoogle Scholar
  15. 15.
    Cardinale D, Biasillo G, Salvatici M, Sandri MT, Cipolla CM (2017) Using biomarkers to predict and to prevent cardiotoxicity of cancer therapy. Expert Rev Mol Diagn 17:245–256PubMedGoogle Scholar
  16. 16.
    Daubert MA, Jeremias A (2010) The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag 6:691–699PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lipshultz SE, Rifai N, Sallan SE, Lipsitz SR, Dalton V, Sacks DB, Ottlinger ME (1997) Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 96:2641–2648PubMedGoogle Scholar
  18. 18.
    Cardinale D, Sandri MT, Martinoni A, Borghini E, Civelli M, Lamantia G, Cinieri S, Martinelli G, Fiorentini C, Cipolla CM (2002) Myocardial injury revealed by plasma troponin I in breast cancer treatment with high dose chemotherapy. Ann Oncol 13:710–715PubMedGoogle Scholar
  19. 19.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of Troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754PubMedGoogle Scholar
  20. 20.
    Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, Lamantia G, Colombo N, Cortinovis S, Dessanai MA, Nolè F, Veglia F, Cipolla CM (2010) Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of Troponin I evaluation. J Clin Oncol 28:3910–3916PubMedGoogle Scholar
  21. 21.
    Kitayama H, Kondo T, Sugiyama J, Kurimoto K, Nishino Y, Kawada M, Hirayama M, Tsuji Y (2017) High-sensitive troponin T assay can predict anthracycline- and trastuzumab-induced cardiotoxicity in breast cancer patients. Breast Cancer 24(6):774–782PubMedGoogle Scholar
  22. 22.
    Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, Dent S, Douglas PS, Durand JB, Ewer M, Fabian C, Hudson M, Jessup M, Jones LW, Ky B, Mayer EL, Moslehi J, Oeffinger K, Ray K, Ruddy K, Lenihan D (2017) Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 35:893–911PubMedGoogle Scholar
  23. 23.
    Cardinale D, Cipolla CM (2016) Chemotherapy-induced cardiotoxicity: importance of early detection. Expert Rev Cardiovasc Ther 14:1297–1299PubMedGoogle Scholar
  24. 24.
    Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G, Fiorentini C, Cipolla CM (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988PubMedGoogle Scholar
  25. 25.
    Gavila J, Seguí MÁ, Calvo L, López T, Alonso JJ, Farto M, Sánchez-de la Rosa R (2017) Evaluation and management of chemotherapy-induced cardiotoxicity in breast cancer: a Delphi study. Clin Transl Oncol 19(1):91–104PubMedGoogle Scholar
  26. 26.
    Jenkins C, Moir S, Chan J, Rakhit D, Haluska B, Marwick TH (2009) Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J 30(1):98–106PubMedGoogle Scholar
  27. 27.
    Aggeli C, Felekos I, Kastellanos S, Panagopoulou V, Oikonomou E, Tsiamis E, Tousoulis D (2015) Real-time three-dimensional echocardiography: never before clinical efficacy looked so picturesque. Int J Cardiol 198:15–21PubMedGoogle Scholar
  28. 28.
    Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE (2012) Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol 59(20):1799–1808PubMedPubMedCentralGoogle Scholar
  29. 29.
    Pignatti M, Mantovani F, Bertelli L, Barbieri A, Pacchioni L, Loschi P, De Santis G (2013) Effects of silicone expanders and implants on echocardiographic image quality after breast reconstruction. Plast Reconstr Surg 132(2):271–278PubMedGoogle Scholar
  30. 30.
    Jurcut R, Wildiers H, Ganame J, D'hooge J, De Backer J, Denys H, Paridaens R, Rademakers F, Voigt JU (2008) Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr 21(12):1283–1289PubMedGoogle Scholar
  31. 31.
    Pavlopoulos H, Nihoyannopoulos P (2008) Strain and strain rate deformation parameters: from tissue Doppler to 2D speckle tracking. Int J Cardiovasc Imaging. 24(5):479–491PubMedGoogle Scholar
  32. 32.
    Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 12(3):167–205PubMedGoogle Scholar
  33. 33.
    Laufer-Perl M, Derakhshesh M, Milwidsky A, Mor L, Ravid D, Amrami N, Sherez J, Keren G, Topilsky Y, Arbel Y (2018) Usefulness of global longitudinal strain for early identification of subclinical left ventricular dysfunction in patients with active cancer. Am J Cardiol 122(10):1784–1789PubMedGoogle Scholar
  34. 34.
    Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, Tian G, Kirkpatrick ID, Singal PK, Krahn M, Grenier D, Jassal DS (2011) The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol 57(22):2263–2270PubMedGoogle Scholar
  35. 35.
    Galanti G, Pedrizzetti G, Pedri S, Stefani L (2017) 2D longitudinal LV speckle tracking strain pattern in breast cancer survivors: sports activity vs exercise as prescription model. Intern Emerg Med 12(8):1149–1157PubMedGoogle Scholar
  36. 36.
    Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 63(25 Pt A):2751–2768PubMedGoogle Scholar
  37. 37.
    Mousavi N, Tan TC, Ali M, Halpern EF, Wang L, Scherrer-Crosbie M (2015) Echocardiographic parameters of left ventricular size and function as predictors of symptomatic heart failure in patients with a left ventricular ejection fraction of 50-59% treated with anthracyclines. Eur Heart J Cardiovasc Imaging 16(9):977–984PubMedGoogle Scholar
  38. 38.
    Motoki H, Koyama J, Nakazawa H, Aizawa K, Kasai H, Izawa A, Tomita T, Miyashita Y, Kumazaki S, Takahashi M, Ikeda U (2012) Torsion analysis in the early detection of anthracycline-mediated cardiomyopathy. Eur Heart J Cardiovasc Imaging 13(1):95–103PubMedGoogle Scholar
  39. 39.
    Xu Y, Shi J, Zhao R, Zhang C, He Y, Lin J, Zhang Q, Shu X, Cheng L (2019) Anthracycline induced inconsistent left ventricular segmental systolic function variation in patients with lymphoma detected by three-dimensional speckle tracking imaging. Int J Cardiovasc Imaging 35:771–779.  https://doi.org/10.1007/s10554-018-1510-2 CrossRefPubMedGoogle Scholar
  40. 40.
    Mavrogeni SI, Markousis-Mavrogenis G, Kolovou G (2018) “Save the last dance” for cardiovascular magnetic resonance. Eur Cardiol 13(2):95–97PubMedPubMedCentralGoogle Scholar
  41. 41.
    Wassmuth R, Lentzsch S, Erdbruegger U, Schulz-Menger J, Doerken B, Dietz R, Friedrich MG (2001) Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging—a pilot study. Am Heart J 141:1007–1013PubMedGoogle Scholar
  42. 42.
    Drafts BC, Twomley KM, D’Agostino R Jr et al (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. J Am Coll Cardiol Img 6:877–885Google Scholar
  43. 43.
    Bellenger N, Burgess M, Ray S, Lahiri A, Coats AJ, Cleland JG, Pennell DJ (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J 21:1387–1396PubMedGoogle Scholar
  44. 44.
    Wang K, Eblan MJ, Deal AM, Lipner M, Zagar TM, Wang Y, Mavroidis P, Lee CB, Jensen BC, Rosenman JG, Socinski MA, Stinchcombe TE, Marks LB (2017) Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose escalation trials delivering 70 to 90 Gy. J Clin Oncol 35:1387–1394PubMedPubMedCentralGoogle Scholar
  45. 45.
    Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45:55–75PubMedGoogle Scholar
  46. 46.
    Romano S, Judd RM, Kim RJ, Kim HW, Klem I, Heitner J, Shah DJ, Jue J, White BE, Shenoy C, Farzaneh-Far A (2017) Association of feature-tracking cardiac magnetic resonance imaging left ventricular global longitudinal strain with all-cause mortality in patients with reduced left ventricular ejection fraction. Circulation 135:2313–2315PubMedPubMedCentralGoogle Scholar
  47. 47.
    Jolly M-P, Jordan JH, Meléndez GC, McNeal GR, D’Agostino RB, Hundley WG (2017) Auto-mated assessments of circumferential strain from cine CMR correlate with LVEF declines in cancer patients early after receipt of cardio-toxic chemotherapy. J Cardiovasc Magn Reson 19:59PubMedPubMedCentralGoogle Scholar
  48. 48.
    Haslbauer JD, Lindner S, Valbuena-Lopez S, Zainal H, Zhou H, D'Angelo T, Pathan F, Arendt CA, Bug G, Serve H, Vogl TJ, Zeiher AM, Carr-White G, Nagel E, Puntmann VO (2019) CMR imaging biosignature of cardiac involvement due to cancer-related treatment by T1 and T2 mapping. Int J Cardiol 275:179–186PubMedGoogle Scholar
  49. 49.
    Neilan TG, Coelho OR, Shah RV et al (2013) Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol 111:717–722PubMedGoogle Scholar
  50. 50.
    Jordan JH, D’Agostino RB, Hamilton CA et al (2014) Longitudinal assessment of concurrent changes in left ventricular ejection fraction and left ventricular myocardial tissue characteristics after administration of cardiotoxic chemotherapies using t1-weighted and t2-weighted cardiovascular magnetic resonance. Circ Cardiovasc Imaging 7:872–879PubMedPubMedCentralGoogle Scholar
  51. 51.
    Mavrogeni S, Apostolou D, Argyriou P, Velitsista S, Papa L, Efentakis S, Vernardos E, Kanoupaki M, Kanoupakis G, Manginas A (2017) T1 and T2 mapping in cardiology: “mapping the obscure object of desire”. Cardiology. 138(4):207–217PubMedGoogle Scholar
  52. 52.
    Vasu S, Hundley WG (2013) Understanding cardio-vascular injury after treatment for cancer: an overview of current uses and future directions of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:66–83PubMedPubMedCentralGoogle Scholar
  53. 53.
    Mavrogeni S, Bratis K, Koutsogeorgopoulou L, Karabela G, Savropoulos E, Katsifis G, Raftakis J, Markousis-Mavrogenis G, Kolovou G (2017) Myocardial perfusion in peripheral Raynaud’s phenomenon. Evaluation using stress cardiovascular magnetic resonance. Int J Cardiol 228:444–448PubMedGoogle Scholar
  54. 54.
    Barthur A, Brezden-Masley C, Connelly KA, Dhir V, Chan KKW, Haq R, Kirpalani A, Barfett JJ, Jimenez-Juan L, Karur GR, Deva DP, Yan AT (2017) Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study. J Cardiovasc Magn Reson 19:44PubMedPubMedCentralGoogle Scholar
  55. 55.
    Jordan JH, Castellino SM, Meléndez GC et al (2018) Left ventricular mass change after anthracycline chemotherapy. Circ Heart Fail 11:e004560PubMedPubMedCentralGoogle Scholar
  56. 56.
    White CS (1996) MR evaluation of the pericardium and cardiac malignancies. Magn Reson Imaging Clin N Am 4:237–251PubMedGoogle Scholar
  57. 57.
    Imazio M, Demichelis B, Parrini I, Favro E, Beqaraj F, Cecchi E, Pomari F, Demarie D, Ghisio A, Belli R, Bobbio M, Trinchero R (2005) Relation of acute pericardial disease to malignancy. Am J Cardiol 95:1393–1394PubMedGoogle Scholar
  58. 58.
    Maisch B, Ristic A, Pankuweit S (2010) Evaluation and management of pericardial effusion in patients with neoplastic disease. Prog Cardiovasc Dis 53:157–163PubMedGoogle Scholar
  59. 59.
    Kojima S, Yamada N, Goto Y (1999) Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med 341:373–374PubMedGoogle Scholar
  60. 60.
    Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Hetts SW, Higgins CB (2003) CT and MR imaging of pericardial disease. Radiographics 23 Spec No:S167–S180Google Scholar
  61. 61.
    Zurick AO, Bolen MA, Kwon DH, Tan CD, Popovic ZB, Rajeswaran J, Rodriguez ER, Flamm SD, Klein AL (2011) Pericardial delayed hyperenhancement with CMR imaging in patients with constrictive pericarditis undergoing surgical pericardiectomy: a case series with histopathological correlation. J Am Coll Cardiol Img 4:1180–1191Google Scholar
  62. 62.
    Bogaert J, Francone M (2009) Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson 11:14PubMedPubMedCentralGoogle Scholar
  63. 63.
    Perez EA, Barrios C, Eiermann W, Toi M, Im YH, Conte P, Martin M, Pienkowski T, Pivot X, Burris HA, Petersen JA, Stanzel S, Strasak A, Patre M, Ellis P (2017) Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE Study. J Clin Oncol 35:141–148PubMedGoogle Scholar
  64. 64.
    Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, Colan SD, Asselin BL, Barr RD, Clavell LA, Hurwitz CA, Moghrabi A, Samson Y, Schorin MA, Gelber RD, Sallan SE (2004) The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351:145–153PubMedGoogle Scholar
  65. 65.
    Sieswerda E, van Dalen EC, Postma A et al (2011) Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer [serial online]. Cochrane Database Syst Rev 9Google Scholar
  66. 66.
    Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, Cohen GI, Emami B, Gradishar WJ, Mitchell RB, Thigpen JT, Trotti A III, von Hoff D, Schuchter LM (2009) American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 27:127–145PubMedGoogle Scholar
  67. 67.
    Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, Oguzhan A, Eryol NK, Topsakal R, Ergin A, Inanc T (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48:2258–2262PubMedGoogle Scholar
  68. 68.
    Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, Kalay N, Dikilitas M, Yarlioglues M, Karaca H, Berk V, Ardic I, Ergin A, Lam YY (2013) Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol 167:2306–2310PubMedGoogle Scholar
  69. 69.
    Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH (2013) Cardioprotective effect of β-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail 6:420–426PubMedGoogle Scholar
  70. 70.
    Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, Pagano JJ, Chow K, Thompson RB, Vos LJ, Ghosh S, Oudit GY, Ezekowitz JA, Paterson DI (2017) Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-breast): a randomized trial for the prevention of Trastuzumab-associated cardiotoxicity. J Clin Oncol 35:870–877PubMedGoogle Scholar
  71. 71.
    Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, Martinelli G, Veglia F, Fiorentini C, Cipolla CM (2006) Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 114:2474–2481PubMedGoogle Scholar
  72. 72.
    Cadeddu C, Piras A, Mantovani G et al (2010) Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J 160:487.e1-7PubMedGoogle Scholar
  73. 73.
    Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C, Berk V, Karaca H, Kalay N, Oguzhan A, Ergin A (2015) Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail 17:81–89PubMedGoogle Scholar
  74. 74.
    Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH (2012) Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol 60:2384–2390PubMedGoogle Scholar
  75. 75.
    Chotenimitkhun R, D’Agostino R Jr, Lawrence JA et al (2015) Chronic statin administration may attenuate early anthracycline-associated declines in left ventricular ejection function. Can J Cardiol 31:302–307PubMedGoogle Scholar
  76. 76.
    Elitok A, Oz F, Cizgici AY, Kilic L, Ciftci R, Sen F, Bugra Z, Mercanoglu F, Oncul A, Oflaz H (2014) Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up. Cardiol J 21:509–515PubMedGoogle Scholar
  77. 77.
    Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR Jr et al (2018) Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY Trial. J Am Coll Cardiol 71:2281–2290PubMedGoogle Scholar
  78. 78.
    Boekhout AH, Gietema JA, Milojkovic Kerklaan B, van Werkhoven ED, Altena R, Honkoop A, Los M, Smit WM, Nieboer P, Smorenburg CH, Mandigers CMPW, van der Wouw AJ, Kessels L, van der Velden AWG, Ottevanger PB, Smilde T, de Boer J, van Veldhuisen DJ, Kema IP, de Vries EGE, Schellens JHM (2016) Angiotensin II-receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: a randomized clinical trial. JAMA Oncol 2:1030–1037PubMedGoogle Scholar
  79. 79.
    Cardinale D, Ciceri F, Latini R, Franzosi MG, Sandri MT, Civelli M, Cucchi GF, Menatti E, Mangiavacchi M, Cavina R, Barbieri E, Gori S, Colombo A, Curigliano G, Salvatici M, Rizzo A, Ghisoni F, Bianchi A, Falci C, Aquilina M, Rocca A, Monopoli A, Milandri C, Rossetti G, Bregni M, Sicuro M, Malossi A, Nassiacos D, Verusio C, Giordano M, Staszewsky L, Barlera S, Nicolis EB, Magnoli M, Masson S, Cipolla CM, Cipolla CM, Cardinale D, Ciceri F, Latini R, Sandri MT, Maggioni AP, Labianca R, Tettamanti M, Senni M, Finzi A, Grosso F, Vago T, Civelli M, Gramenzi S, Masson S, Balconi G, Bernasconi R, Salvatici M, Nicolis E, Barlera S, Magnoli M, Buratti MG, Ojeda Fernandez ML, Franzosi MG, Staszewsky L, Vasamì A, Malossi A, Sicuro M, Thiebat B, Barè C, Corzani A, Coccolo F, Colecchia S, Pellegrini C, Bregni M, Appio L, Caico I, G.Rossetti, Mesenzani O, Campana C, Giordano M, Gilardoni M, Scognamiglio G, Corrado G, Battagin D, de Rosa F, Carpino C, Palazzo S, Monopoli A, Milandri C, Giannessi PG, Zipoli G, Ghisoni F, Rizzo A, Pastori P, Callegari S, Sesenna C, Colombo A, G.Curigliano, Fodor C, Mangiavacchi M, Cavina R, Guiducci D, Mazza R, Turazza FM, Vallerio P, Marbello L, Sala E, Fragasso G, Trinca S, Aquilina M, Rocca A, Farolfi A, Andreis D, Gori S, Barbieri E, Lanzoni L, Marchetti F, Falci C, Bianchi A, Mioranza E, Banzato A, Re F, Gaibazzi N, Gullo M, Turina MC, Gervasi E, Giaroli F, Nassiacos D, Verusio C, Barco B, Bertolini A, Cucchi G, Menatti E, Sinagra G, Aleksova A, Guglielmi A, Pinotti G, Gueli R, Mongiardi C, Vallini I (2018) ICOS-ONE study investigators anthracycline-induced cardiotoxicity: a multicenter randomised trial comparing two strategies for guiding prevention with enalapril: the International CardioOncology Society-one trial. Eur J Cancer 94:126–137PubMedGoogle Scholar
  80. 80.
    Curigliano G, Cardinale D, Suter T et al (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol 23:vii155–vii166PubMedGoogle Scholar
  81. 81.
    Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, de Giacomi G, Rubino M, Veglia F, Fiorentini C, Cipolla CM (2010) Anthracycline-induced cardiomyopathy. Clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55:213–220PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sophie I. Mavrogeni
    • 1
    Email author
  • Elisa Sfendouraki
    • 2
  • George Markousis-Mavrogenis
    • 1
  • Angelos Rigopoulos
    • 3
  • Michel Noutsias
    • 3
  • Genovefa Kolovou
    • 1
  • Constantina Angeli
    • 2
  • Dimitrios Tousoulis
    • 2
  1. 1.Onassis Cardiac Surgery Center and KapodistrianUniversity of AthensAthensGreece
  2. 2.First Cardiology Department, Hippokration HospitalUniversity of AthensAthensGreece
  3. 3.Mid-German Heart Center, Department of Internal Medicine III (KIM III), Division of Cardiology, Angiology and Intensive Medical Care, University Hospital HalleMartin-Luther-University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations