Heart Failure Reviews

, Volume 24, Issue 6, pp 1019–1030 | Cite as

Immune cell diversity contributes to the pathogenesis of myocarditis

  • Xiumeng Hua
  • Jiangping SongEmail author


Myocarditis (MCD) is a type of inflammatory disease in which inflammatory cells infiltrate the myocardium, leading to cardiac dysfunction, myocardial necrosis, and fibrosis. Although it has been reported that MCD is mediated by T cells, the immune system is complex and includes many types of immune cells that interact with one another. Through investigations of the inflammatory responses in MCD including myocardial necrosis, fibrosis, and arrhythmia, we have gained further insight into the pathogenesis of MCD. This article aims to discuss the diversity and the roles of immune cells involved in the pathogenesis of MCD. Moreover, immunotherapy for the treatment of MCD remains controversial, and further investigation is required to identify accurate immunotherapies for special cell types.


Myocarditis Immune cell diversity Interaction Pathogenesis Immunotherapy 



This study was funded by CAMS Innovation Fund for Medical Sciences (CIFMS, 2016-I2M-1-015), PUMC Youth Fund (2016-XHQN03) and the National Natural Science Foundation of China (81670376).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sagar S, Liu PP, Cooper LJ (2012) Myocarditis. Lancet 379:738–747PubMedGoogle Scholar
  2. 2.
    Vdovenko D, Eriksson U (2018) Regulatory role of CD4(+) T cells in myocarditis. J Immunol Res 2018:4396351PubMedPubMedCentralGoogle Scholar
  3. 3.
    Leone O, Veinot JP, Angelini A, Baandrup UT, Basso C, Berry G, Bruneval P, Burke M, Butany J, Calabrese F, D'Amati G, Edwards WD, Fallon JT, Fishbein MC, Gallagher PJ, Halushka MK, McManus B, Pucci A, Rodriguez ER, Saffitz JE, Sheppard MN, Steenbergen C, Stone JR, Tan C, Thiene G, van der Wal AC, Winters GL (2012) 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol 21:245–274PubMedGoogle Scholar
  4. 4.
    Heymans S, Eriksson U, Lehtonen J, Cooper LJ (2016) The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J Am Coll Cardiol 68:2348–2364PubMedGoogle Scholar
  5. 5.
    Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT, Klingel K, Kandolf R, Sechtem U (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590PubMedGoogle Scholar
  6. 6.
    Epelman S, Liu PP, Mann DL (2015) Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15:117–129PubMedPubMedCentralGoogle Scholar
  7. 7.
    Hamid T, Prabhu SD (2017) Immunomodulation is the key to cardiac repair. Circ Res 120:1530–1532PubMedPubMedCentralGoogle Scholar
  8. 8.
    Fung G, Luo H, Qiu Y, Yang D, McManus B (2016) Myocarditis. Circ Res 118:496–514PubMedGoogle Scholar
  9. 9.
    Pinto AR, Paolicelli R, Salimova E, Gospocic J, Slonimsky E, Bilbao-Cortes D, Godwin JW, Rosenthal NA (2012) An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS One 7:e36814PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047PubMedPubMedCentralGoogle Scholar
  11. 11.
    Choi JH, Do Y, Cheong C, Koh H, Boscardin SB, Oh YS, Bozzacco L, Trumpfheller C, Park CG, Steinman RM (2009) Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med 206:497–505PubMedPubMedCentralGoogle Scholar
  12. 12.
    Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, Spengler RN, Smith CW, Entman ML (1998) Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710PubMedGoogle Scholar
  13. 13.
    Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175PubMedGoogle Scholar
  14. 14.
    Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489PubMedGoogle Scholar
  15. 15.
    Shah AD, Denaxas S, Nicholas O, Hingorani AD, Hemingway H (2017) Neutrophil counts and initial presentation of 12 cardiovascular diseases: a CALIBER cohort study. J Am Coll Cardiol 69:1160–1169PubMedPubMedCentralGoogle Scholar
  16. 16.
    Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guerin C, Vilar J, Caligiuri G, Tsiantoulas D, Laurans L, Dumeau E, Kotti S, Bruneval P, Charo IF, Binder CJ, Danchin N, Tedgui A, Tedder TF, Silvestre JS, Mallat Z (2013) B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 19:1273–1280PubMedPubMedCentralGoogle Scholar
  17. 17.
    Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W, Li N, Frangogiannis NG (2014) Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am J Physiol Heart Circ Physiol 307:H1233–H1242PubMedPubMedCentralGoogle Scholar
  18. 18.
    Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL, Advani RH, Buckstein R, Rimsza LM, Connors JM, Steidl C, Gordon LI, Horning SJ, Gascoyne RD (2012) Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 intergroup trial. Blood 120:3280–3287PubMedPubMedCentralGoogle Scholar
  19. 19.
    Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104PubMedPubMedCentralGoogle Scholar
  20. 20.
    Jaquenod DGC, Ure AE, Rivadeneyra L, Schattner M, Gomez RM (2015) Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis. J Mol Cell Cardiol 85:58–70Google Scholar
  21. 21.
    Wang C, Dong C, Xiong S (2017) IL-33 enhances macrophage M2 polarization and protects mice from CVB3-induced viral myocarditis. J Mol Cell Cardiol 103:22–30PubMedGoogle Scholar
  22. 22.
    Ganguly D, Haak S, Sisirak V, Reizis B (2013) The role of dendritic cells in autoimmunity. Nat Rev Immunol 13:566–577PubMedPubMedCentralGoogle Scholar
  23. 23.
    Sapienza MR, Fuligni F, Agostinelli C, Tripodo C, Righi S, Laginestra MA, Pileri AJ, Mancini M, Rossi M, Ricci F, Gazzola A, Melle F, Mannu C, Ulbar F, Arpinati M, Paulli M, Maeda T, Gibellini D, Pagano L, Pimpinelli N, Santucci M, Cerroni L, Croce CM, Facchetti F, Piccaluga PP, Pileri SA (2014) Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition. Leukemia 28:1606–1616PubMedPubMedCentralGoogle Scholar
  24. 24.
    Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, Sonderegger I, Bachmaier K, Kopf M, Penninger JM (2003) Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9:1484–1490PubMedGoogle Scholar
  25. 25.
    Kretzschmar D, Betge S, Windisch A, Pistulli R, Rohm I, Fritzenwanger M, Jung C, Schubert K, Theis B, Petersen I, Drobnik S, Mall G, Figulla HR, Yilmaz A (2012) Recruitment of circulating dendritic cell precursors into the infarcted myocardium and pro-inflammatory response in acute myocardial infarction. Clin Sci (Lond) 123:387–398Google Scholar
  26. 26.
    Collin M, McGovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140:22–30PubMedPubMedCentralGoogle Scholar
  27. 27.
    Parham P, Guethlein LA (2018) Genetics of natural killer cells in human health, disease, and survival. Annu Rev Immunol 36:519–548PubMedGoogle Scholar
  28. 28.
    Mace EM, Gunesch JT, Dixon A, Orange JS (2016) Human NK cell development requires CD56-mediated motility and formation of the developmental synapse. Nat Commun 7:12171PubMedPubMedCentralGoogle Scholar
  29. 29.
    Jost S, Altfeld M (2013) Control of human viral infections by natural killer cells. Annu Rev Immunol 31:163–194PubMedGoogle Scholar
  30. 30.
    Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14:478–494PubMedGoogle Scholar
  31. 31.
    Higuchi H, Hara M, Yamamoto K, Miyamoto T, Kinoshita M, Yamada T, Uchiyama K, Matsumori A (2008) Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation 118:363–372PubMedGoogle Scholar
  32. 32.
    Meng X, Yang J, Dong M, Zhang K, Tu E, Gao Q, Chen W, Zhang C, Zhang Y (2016) Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol 13:167–179PubMedGoogle Scholar
  33. 33.
    Song J, Chen X, Cheng L, Rao M, Chen K, Zhang N, Meng J, Li M, Liu ZQ, Yang PC (2018) Vitamin D receptor restricts Th2-biased inflammation in the heart. Cardiovasc Res 114:870–879PubMedGoogle Scholar
  34. 34.
    Nindl V, Maier R, Ratering D, De Giuli R, Zust R, Thiel V, Scandella E, Di Padova F, Kopf M, Rudin M, Rulicke T, Ludewig B (2012) Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol 42:2311–2321PubMedGoogle Scholar
  35. 35.
    Walker JA, McKenzie A (2018) TH2 cell development and function. Nat Rev Immunol 18:121–133PubMedGoogle Scholar
  36. 36.
    Eriksson U, Kurrer MO, Sebald W, Brombacher F, Kopf M (2001) Dual role of the IL-12/IFN-gamma axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-gamma. J Immunol 167:5464–5469PubMedGoogle Scholar
  37. 37.
    Eriksson U, Kurrer MO, Bingisser R, Eugster HP, Saremaslani P, Follath F, Marsch S, Widmer U (2001) Lethal autoimmune myocarditis in interferon- γ receptor − deficient mice : enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation 103:18–21PubMedGoogle Scholar
  38. 38.
    Ono M, Shimizu J, Miyachi Y, Sakaguchi S (2006) Control of autoimmune myocarditis and multiorgan inflammation by glucocorticoid-induced TNF receptor family-related protein (high), Foxp3-expressing CD25+ and CD25- regulatory T cells. J Immunol 176:4748–4756PubMedGoogle Scholar
  39. 39.
    Golstein P, Griffiths GM (2018) An early history of T cell-mediated cytotoxicity. Nat Rev Immunol 18:527–535PubMedGoogle Scholar
  40. 40.
    Yu Y, Ma X, Gong R, Zhu J, Wei L, Yao J (2018) Recent advances in CD8(+) regulatory T cell research. Oncol Lett 15:8187–8194PubMedPubMedCentralGoogle Scholar
  41. 41.
    Massilamany C, Gangaplara A, Basavalingappa RH, Rajasekaran RA, Khalilzad-Sharghi V, Han Z, Othman S, Steffen D, Reddy J (2016) Localization of CD8 T cell epitope within cardiac myosin heavy chain-alpha334-352 that induces autoimmune myocarditis in a/J mice. Int J Cardiol 202:311–321PubMedGoogle Scholar
  42. 42.
    Matsumoto Y, Park IK, Kohyama K (2007) B-cell epitope spreading is a critical step for the switch from C-protein-induced myocarditis to dilated cardiomyopathy. Am J Pathol 170:43–51PubMedPubMedCentralGoogle Scholar
  43. 43.
    Schulz C, Gomez PE, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90PubMedGoogle Scholar
  44. 44.
    Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N, Frenzel K, Pinto AR, Klapproth K, Henri S, Malissen B, Rodewald HR, Rosenthal NA, Bajenoff M, Prinz M, Jung S, Sieweke MH (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211:2151–2158PubMedPubMedCentralGoogle Scholar
  45. 45.
    van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829PubMedPubMedCentralGoogle Scholar
  46. 46.
    Li K, Xu W, Guo Q, Jiang Z, Wang P, Yue Y, Xiong S (2009) Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 105:353–364PubMedGoogle Scholar
  47. 47.
    Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wulfers EM, Seemann G, Courties G, Iwamoto Y, Sun Y, Savol AJ, Sager HB, Lavine KJ, Fishbein GA, Capen DE, Da SN, Miquerol L, Wakimoto H, Seidman CE, Seidman JG, Sadreyev RI, Naxerova K, Mitchell RN, Brown D, Libby P, Weissleder R, Swirski FK, Kohl P, Vinegoni C, Milan DJ, Ellinor PT, Nahrendorf M (2017) Macrophages facilitate electrical conduction in the heart. Cell 169:510–522.e20PubMedPubMedCentralGoogle Scholar
  48. 48.
    Uemura A, Morimoto S, Hiramitsu S, Hishida H (2001) Endomyocardial biopsy findings in 50 patients with idiopathic atrioventricular block: presence of myocarditis. Jpn Heart J 42:691–700PubMedGoogle Scholar
  49. 49.
    Kania G, Siegert S, Behnke S, Prados-Rosales R, Casadevall A, Luscher TF, Luther SA, Kopf M, Eriksson U, Blyszczuk P (2013) Innate signaling promotes formation of regulatory nitric oxide-producing dendritic cells limiting T-cell expansion in experimental autoimmune myocarditis. Circulation 127:2285–2294PubMedGoogle Scholar
  50. 50.
    Griffin GK, Lichtman AH (2013) Two sides to every proinflammatory coin: new insights into the role of dendritic cells in the regulation of T-cell driven autoimmune myocarditis. Circulation 127:2257–2260PubMedPubMedCentralGoogle Scholar
  51. 51.
    Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR (2001) From infection to autoimmunity. J Autoimmun 16(3):175–186PubMedGoogle Scholar
  52. 52.
    Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510Google Scholar
  53. 53.
    Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4:787–799PubMedGoogle Scholar
  54. 54.
    St JA, Abraham SN (2013) Innate immunity and its regulation by mast cells. J Immunol 190:4458–4463Google Scholar
  55. 55.
    Liu ZQ, Song JP, Liu X, Jiang J, Chen X, Yang L, Hu T, Zheng PY, Liu ZG, Yang PC (2014) Mast cell-derived serine proteinase regulates T helper 2 polarization. Sci Rep 4:4649PubMedPubMedCentralGoogle Scholar
  56. 56.
    Gieseck RR, Wilson MS, Wynn TA (2017) Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 18:62–76PubMedGoogle Scholar
  57. 57.
    Segura AM, Frazier OH, Buja LM (2014) Fibrosis and heart failure. Heart Fail Rev 19:173–185PubMedGoogle Scholar
  58. 58.
    Blyszczuk P, Muller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Luscher TF, Distler O, Eriksson U, Kania G (2017) Transforming growth factor-beta-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J 38:1413–1425PubMedGoogle Scholar
  59. 59.
    Opavsky MA, Penninger J, Aitken K, Wen WH, Dawood F, Mak T, Liu P (1999) Susceptibility to myocarditis is dependent on the response of alphabeta T lymphocytes to coxsackieviral infection. Circ Res 85:551–558PubMedGoogle Scholar
  60. 60.
    Smith SC, Allen PM (1991) Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol 147:2141–2147PubMedGoogle Scholar
  61. 61.
    Penninger JM, Pummerer C, Liu P, Neu N, Bachmaier K (1997) Cellular and molecular mechanisms of murine autoimmune myocarditis. APMIS 105:1–13PubMedGoogle Scholar
  62. 62.
    Chen P, Baldeviano GC, Ligons DL, Talor MV, Barin JG, Rose NR, Cihakova D (2012) Susceptibility to autoimmune myocarditis is associated with intrinsic differences in CD4(+) T cells. Clin Exp Immunol 169:79–88PubMedPubMedCentralGoogle Scholar
  63. 63.
    Bonelli M, Shih HY, Hirahara K, Singelton K, Laurence A, Poholek A, Hand T, Mikami Y, Vahedi G, Kanno Y, O'Shea JJ (2014) Helper T cell plasticity: impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr Top Microbiol Immunol 381:279–326PubMedPubMedCentralGoogle Scholar
  64. 64.
    Borst J, Ahrends T, Babala N, Melief C, Kastenmuller W (2018) CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18:635–647PubMedGoogle Scholar
  65. 65.
    Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355PubMedGoogle Scholar
  66. 66.
    Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL, Becker JR, Slosky DA, Phillips EJ, Pilkinton MA, Craig-Owens L, Kola N, Plautz G, Reshef DS, Deutsch JS, Deering RP, Olenchock BA, Lichtman AH, Roden DM, Seidman CE, Koralnik IJ, Seidman JG, Hoffman RD, Taube JM, Diaz LJ, Anders RA, Sosman JA, Moslehi JJ (2016) Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 375:1749–1755PubMedPubMedCentralGoogle Scholar
  67. 67.
    Chaigne B, Mouthon L (2017) Mechanisms of action of intravenous immunoglobulin. Transfus Apher Sci 56(1):45–49PubMedGoogle Scholar
  68. 68.
    Orange J, Hossny E, Weiler C, Ballow M, Berger M, Bonilla F, Buckley R, Chinen J, Elgamal Y, Mazer B (2006) Use of intravenous immunoglobulin in human disease: a review of evidence by members of the primary immunodeficiency Committee of the American Academy of allergy, asthma and immunology. J Allergy Clin Immunol 117(4):S525–S553PubMedGoogle Scholar
  69. 69.
    Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA, Voll RE (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14(7):748–755PubMedGoogle Scholar
  70. 70.
    Nikolaev VO, Boivin V, Störk S, Angermann CE, Ertl G, Lohse MJ, Jahns R (2007) A novel fluorescence method for the rapid detection of functional Î21-adrenergic receptor autoantibodies in heart failure. J Am Coll Cardiol 50(5):423–431PubMedGoogle Scholar
  71. 71.
    Mobini R, Staudt A, Felix SB, Baumann G, Wallukat G, Deinum J, Svensson H, Hjalmarson Å, Michael F (2003) Hemodynamic improvement and removal of autoantibodies against β -adrenergic receptor by immunoadsorption therapy in dilated cardiomyopathy. J Autoimmun 20(4):345–350PubMedGoogle Scholar
  72. 72.
    Trimpert C, Herda LR, Eckerle LG, Pohle S, Müller C, Landsberger M, Felix SB, Staudt A (2010) Immunoadsorption in dilated cardiomyopathy: long-term reduction of cardiodepressant antibodies. Eur J Clin Investig 40(8):685–691Google Scholar
  73. 73.
    Felix SB, Staudt A, Landsberger M, Grosse Y, Stangl V, Spielhagen T, Wallukat G, Wernecke KD, Baumann G, Stangl K (2002) Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J Am Coll Cardiol 39(4):646–652PubMedGoogle Scholar
  74. 74.
    Benvenuto LJ, Anderson MR, Arcasoy SM (2018) New frontiers in immunosuppression. J Thorac Dis 10(5):3141–3155PubMedPubMedCentralGoogle Scholar
  75. 75.
    Schmeits PCJ, Schaap MM, Luijten M, van Someren E, Boorsma A, van Loveren H, Peijnenburg AACM, Hendriksen PJM (2015) Detection of the mechanism of immunotoxicity of cyclosporine a in murine in vitro and in vivo models. Arch Toxicol 89(12):2325–2337PubMedGoogle Scholar
  76. 76.
    Winter MP, Sulzgruber P, Koller L, Bartko P, Goliasch G, Niessner A (2018) Immunomodulatory treatment for lymphocytic myocarditis-a systematic review and meta-analysis. Heart Fail Rev 23:573–581PubMedPubMedCentralGoogle Scholar
  77. 77.
    Matsumoto Y, Jee Y, Sugisaki M (2000) Successful TCR-based immunotherapy for autoimmune myocarditis with DNA vaccines after rapid identification of pathogenic TCR. J Immunol 164:2248–2254PubMedGoogle Scholar
  78. 78.
    Tarrio ML, Grabie N, Bu DX, Sharpe AH, Lichtman AH (2012) PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J Immunol 188:4876–4884PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations