Advertisement

Heart Failure Reviews

, Volume 24, Issue 5, pp 671–700 | Cite as

Clinical significance of nutritional status in patients with chronic heart failure—a systematic review

  • Anna WawrzeńczykEmail author
  • Marzena Anaszewicz
  • Adam Wawrzeńczyk
  • Jacek Budzyński
Article

Abstract

Chronic heart failure (CHF) and nutritional disorders are recognized as major challenges for contemporary medicine. This study aims to estimate the role of nutritional disorders as risk factors for CHF development and prognostic factors for CHF patients and the outcome of nutritional intervention in CHF. Full-text English articles published between January 2013 and February 2019 available in the PubMed and Scopus databases were considered. Seventy-five prospective, retrospective, and cross-sectional studies as well as meta-analyses on patients with CHF, reporting correlation of their nutritional status with the risk and prognosis of CHF and the outcome of nutritional interventions in CHF were all included. Higher BMI increases the risk of CHF by 15–70%, especially when associated with severe, long-lasting and abdominal obesity. Overweight and obesity are associated with the reduction of mortality in CHF by 24–59% and 15–65%, respectively, and do not affect the outcome of invasive CHF treatment. Malnutrition increases the risk of mortality (by 2- to 10-fold) and the risk of hospitalization (by 1.2- to 1.7-fold). Favorable outcome of nutritional support in CHF patients was reported in a few studies. Nutritional disorders are prevalent in patients with CHF and play a significant role in the incidence, course, and prognosis of the disease. The existence of an “obesity paradox” in patients with CHF was confirmed. Further studies on the effect of nutritional support and body weight reduction in patients with CHF are necessary.

Keywords

Chronic heart failure Malnutrition Nutritional status Obesity Prognosis Intervention 

Notes

Funding

This work was not supported by any grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

The manuscript does not contain clinical studies or patient data.

Informed consent

For this type of article, formal consent is not required.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Savarese G, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 3(1):7–11.  https://doi.org/10.15420/cfr.2016:25:2 Google Scholar
  2. 2.
    Ponikowski P, Voors A, Anker S, Bueno H, Cleland J, Coats A, ESC Scientific Document Group (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200.  https://doi.org/10.1093/eurheartj/ehw128 Google Scholar
  3. 3.
    Del Gobbo LC, Kalantarian S, Imamura F, Lemaitre R, Siscovick DS, Psaty BM et al (2015) Contribution of major lifestyle risk factors for incident heart failure in older adults: the cardiovascular health study. JACC Heart Fail 3(7):520–528.  https://doi.org/10.1016/j.jchf.2015.02.009 Google Scholar
  4. 4.
    Iwakami N, Nagai T, Furukawa TA, Sugano Y, Honda S, Okada A, Asaumi Y, Aiba T, Noguchi T, Kusano K, Ogawa H, Yasuda S, Anzai T (2017) Prognostic value of malnutrition assessed by controlling nutritional status score for long-term mortality in patients with acute heart failure. Int J Cardiol 230:529–536.  https://doi.org/10.1016/j.ijcard.2016.12.064 Google Scholar
  5. 5.
    Stewart S, MacIntyre K, Hole DJ, Capewell S, McMurray JJ (2001) More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail 3(3):315–322.  https://doi.org/10.1016/S1388-9842(00)00141-0 Google Scholar
  6. 6.
    Roger VL (2013) Epidemiology of heart failure. Circ Res 113(6):646–659.  https://doi.org/10.1161/CIRCRESAHA.113.300268 Google Scholar
  7. 7.
    Kushner RF, Kahan S (2018) Introduction: the state of obesity in 2017. Med Clin N Am 102(1):1–11.  https://doi.org/10.1016/j.mcna.2017.08.003 Google Scholar
  8. 8.
    International Food Policy Research Institute (2016) Global nutrition report 2016: from promise to impact: ending malnutrition by 2030, Washington, DC. Available on: https://data.unicef.org/wp-content/uploads/2016/06/130565-1.pdf.  https://doi.org/10.2499/9780896295841. Accessed 9 Feb 2019
  9. 9.
    Lavie CJ, De Schutter A, Parto P, Jahangir E, Kokkinos P, Ortega FB et al (2016) Obesity and prevalence of cardiovascular diseases and prognosis—the obesity paradox updated. Prog Cardiovasc Dis 58(5):537–547.  https://doi.org/10.1016/j.pcad.2016.01.008 Google Scholar
  10. 10.
    Alpert MA, Lavie CJ, Agrawal H, Aggarwal KB, Kumar SA (2014) Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl Res 164(4):345–356.  https://doi.org/10.1016/j.trsl.2014.04.010 Google Scholar
  11. 11.
    Kirkland LL, Kashiwagi DT, Brantley S, Scheurer D, Varkey P (2013) Nutrition in the hospitalized patient. J Hosp Med 8(1):52–58.  https://doi.org/10.1002/jhm.1969 Google Scholar
  12. 12.
    Zhang Z, Pereira SL, Luo M, Matheson EM (2017) Evaluation of blood biomarkers associated with risk of malnutrition in older adults: a systematic review and meta-analysis. Nutrients 9(8).  https://doi.org/10.3390/nu9080829
  13. 13.
    Babb EB, Rohrer J (2017) Oral nutritional supplement use in relation to length of stay in heart failure patients at a regional medical center. J Eval Clin Pract 23(6):1211–1217.  https://doi.org/10.1111/jep.12762 Google Scholar
  14. 14.
    Abd Aziz NAS, Teng NIMF, Abdul Hamid MR, Ismail NH (2017) Assessing the nutritional status of hospitalized elderly. Clin Interv Aging 12:1615–1625.  https://doi.org/10.2147/CIA.S140859 Google Scholar
  15. 15.
    Joyce E, Lala A, Stevens SR, Cooper LB, AbouEzzeddine OF, Groarke JD et al (2016) Prevalence, profile, and prognosis of severe obesity in contemporary hospitalized heart failure trial populations. JACC Heart Fail 4(12):923–931.  https://doi.org/10.1016/j.jchf.2016.09.013 Google Scholar
  16. 16.
    Collamati A, Marzetti E, Calvani R, Tosato M, D’Angelo E, Sisto AN et al (2016) Sarcopenia in heart failure: mechanisms and therapeutic strategies. J Geriatr Cardiol 13(7):615–624.  https://doi.org/10.11909/j.issn.1671-5411.2016.07.004 Google Scholar
  17. 17.
    Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG (2013) Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ Heart Fail 6(2):279–286.  https://doi.org/10.1161/CIRCHEARTFAILURE.112.972828 Google Scholar
  18. 18.
    Mørkedal B, Vatten LJ, Romundstad PR, Laugsand LE, Janszky I (2014) Risk of myocardial infarction and heart failure among metabolically healthy but obese individuals: HUNT (Nord-Trøndelag Health Study), Norway. J Am Coll Cardiol 63(11):1071–1078.  https://doi.org/10.1016/j.jacc.2013.11.035 Google Scholar
  19. 19.
    Schmidt M, Bøtker HE, Pedersen L, Sørensen HT (2014) Young adulthood obesity and risk of acute coronary syndromes, stable angina pectoris, and congestive heart failure: a 36-year cohort study. Ann Epidemiol 24(5):356–361.e1.  https://doi.org/10.1016/j.annepidem.2014.01.011 Google Scholar
  20. 20.
    Chahal H, Bluemke DA, Wu CO, McClelland R, Liu K, Shea SJ, Burke G, Balfour P, Herrington D, Shi PB, Post W, Olson J, Watson KE, Folsom AR, Lima JAC (2015) Heart failure risk prediction in the multi-ethnic study of atherosclerosis. Heart 101(1):58–64.  https://doi.org/10.1136/heartjnl-2014-305697 Google Scholar
  21. 21.
    Yang H, Negishi K, Otahal P, Marwick TH (2015) Clinical prediction of incident heart failure risk: a systematic review and meta-analysis. Open Heart 2(1):e000222.  https://doi.org/10.1136/openhrt-2014-000222 Google Scholar
  22. 22.
    Krishnamoorthy A, Greiner MA, Bertoni AG, Eapen ZJ, O’Brien EC, Curtis LH, Hernandez AF, Mentz RJ (2016) The obesity and heart failure epidemics among African Americans: insights from the Jackson heart study. J Card Fail 22(8):589–597.  https://doi.org/10.1016/j.cardfail.2016.03.004 Google Scholar
  23. 23.
    Aune D, Sen A, Norat T, Janszky I, Romundstad P, Tonstad S, Vatten LJ (2016) Body mass index, abdominal fatness, and heart failure incidence and mortality: a systematic review and dose-response meta-analysis of prospective studies. Circulation. 133(7):639–649.  https://doi.org/10.1161/CIRCULATIONAHA.115.016801 Google Scholar
  24. 24.
    Ho JE, Enserro D, Brouwers FP, Kizer JR, Shah SJ, Psaty BM, Bartz TM, Santhanakrishnan R, Lee DS, Chan C, Liu K, Blaha MJ, Hillege HL, van der Harst P, van Gilst WH, Kop WJ, Gansevoort RT, Vasan RS, Gardin JM, Levy D, Gottdiener JS, de Boer RA, Larson MG (2016) Predicting heart failure with preserved and reduced ejection fraction: the international collaboration on heart failure subtypes. Circ Heart Fail 9(6).  https://doi.org/10.1161/CIRCHEARTFAILURE.115.003116
  25. 25.
    Crump C, Sundquist J, Winkleby MA, Sundquist K (2017) Aerobic fitness, muscular strength and obesity in relation to risk of heart failure. Heart. 103(22):1780–1787.  https://doi.org/10.1136/heartjnl-2016-310716 Google Scholar
  26. 26.
    Farrell SW, Finley CE, Radford NB, Haskell WL (2013) Cardiorespiratory fitness, body mass index, and heart failure mortality in men: Cooper Center Longitudinal Study. Circ Heart Fail 6(5):898–905.  https://doi.org/10.1161/CIRCHEARTFAILURE.112.000088 Google Scholar
  27. 27.
    Nagarajan V, Cauthen CA, Starling RC, Tang WH (2013) Prognosis of morbid obesity patients with advanced heart failure. Congest Heart Fail 19(4):160–164.  https://doi.org/10.1111/chf.12038 Google Scholar
  28. 28.
    Stavrakis S, Pakala A, Thomas J, Chaudhry MA, Thadani U (2013) Obesity, brain natriuretic peptide levels and mortality in patients hospitalized with heart failure and preserved left ventricular systolic function. Am J Med Sci 345(3):211–217.  https://doi.org/10.1097/MAJ.0b013e318271c012 Google Scholar
  29. 29.
    Tavazzi L, Senni M, Metra M, Gorini M, Cacciatore G, Chinaglia A, di Lenarda A, Mortara A, Oliva F, Maggioni AP, on the behalf of IN-HF (Italian Network on Heart Failure) Outcome Investigators (2013) Multicenter prospective observational study on acute and chronic heart failure: one-year follow-up results of IN-HF (Italian network on heart failure) outcome registry. Circ Heart Fail 6(3):473–481.  https://doi.org/10.1161/CIRCHEARTFAILURE.112.000161 Google Scholar
  30. 30.
    Barlera S, Tavazzi L, Franzosi MG, Marchioli R, Raimondi E, Masson S, Urso R, Lucci D, Nicolosi GL, Maggioni AP, Tognoni G (2013) Predictors of mortality in 6975 patients with chronic heart failure in the Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico-Heart Failure trial: proposal for a nomogram. Circ Heart Fail 6(1):31–39.  https://doi.org/10.1161/CIRCHEARTFAILURE.112.967828 Google Scholar
  31. 31.
    Huxley RR, Barzi F, Woo J, Giles G, Lam TH, Rahimi K et al (2014) A comparison of risk factors for mortality from heart failure in Asian and non-Asian populations: an overview of individual participant data from 32 prospective cohorts from the Asia-Pacific region. BMC Cardiovasc Disord 14:61.  https://doi.org/10.1186/1471-2261-14-61 Google Scholar
  32. 32.
    Glogner S, Rosengren A, Olsson M, Gudbjörnsdottir S, Svensson AM, Lind M (2014) The association between BMI and hospitalization for heart failure in 83,021 persons with type 2 diabetes: a population-based study from the Swedish National Diabetes Registry. Diabet Med 31(5):586–594.  https://doi.org/10.1111/dme.12340 Google Scholar
  33. 33.
    Cui R, Iso H, Tanabe N, Watanabe Y, Tamakoshi A, JACC Study Group (2014) Association between weight change since 20 years of age with mortality from myocardial infarction and chronic heart failure in the Japan collaborative cohort (JACC) study. Circ J 78(3):649–655.  https://doi.org/10.1253/circj.CJ-13-1057 Google Scholar
  34. 34.
    Khalid U, Ather S, Bavishi C, Chan W, Loehr LR, Wruck LM, Rosamond WD, Chang PP, Coresh J, Virani SS, Nambi V, Bozkurt B, Ballantyne CM, Deswal A (2014) Pre-morbid body mass index and mortality after incident heart failure: the ARIC study. J Am Coll Cardiol 64(25):2743–2749.  https://doi.org/10.1016/j.jacc.2014.09.067 Google Scholar
  35. 35.
    Padwal R, McAlister FA, McMurray JJ, Cowie MR, Rich M, Pocock S et al (2014) The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. Int J Obes 38(8):1110–1114.  https://doi.org/10.1038/ijo.2013.203 Google Scholar
  36. 36.
    Puig T, Ferrero-Gregori A, Roig E, Vazquez R, Gonzalez-Juanatey JR, Pascual-Figal D, Delgado J, Alonso-Pulpon L, Borras X, Mendez A, Cinca J (2014) Prognostic value of body mass index and waist circumference in patients with chronic heart failure (Spanish REDINSCOR registry). Rev Esp Cardiol 67(2):101–106.  https://doi.org/10.1016/j.rec.2013.06.022 Google Scholar
  37. 37.
    Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Papacosta O, Sattar N (2014) The obesity paradox in men with coronary heart disease and heart failure: the role of muscle mass and leptin. Int J Cardiol 171(1):49–55.  https://doi.org/10.1016/j.ijcard.2013.11.043 Google Scholar
  38. 38.
    Cioffi G, Pulignano G, Barbati G, Tarantini L, Del Sindaco D, Mazzone C et al (2014) Reasons why patients suffering from chronic heart failure at very high risk for death survive. Int J Cardiol 177(1):213–218.  https://doi.org/10.1016/j.ijcard.2014.09.027 Google Scholar
  39. 39.
    Pinho EM, Lourenço P, Silva S, Laszczyńska O, Leite AB, Gomes F et al (2015) Higher BMI in heart failure patients is associated with longer survival only in the absence of diabetes. J Cardiovasc Med (Hagerstown) 16(8):576–582.  https://doi.org/10.2459/JCM.0b013e328364be3c Google Scholar
  40. 40.
    Vest AR, Wu Y, Hachamovitch R, Young JB, Cho L (2015) The heart failure overweight/obesity survival paradox: the missing sex link. JACC Heart Fail 3(11):917–926.  https://doi.org/10.1016/j.jchf.2015.06.009 Google Scholar
  41. 41.
    Shadman R, Poole JE, Dardas TF, Mozaffarian D, Cleland JG, Swedberg K et al (2015) A novel method to predict the proportional risk of sudden cardiac death in heart failure: derivation of the Seattle proportional risk model. Heart Rhythm 12(10):2069–2077.  https://doi.org/10.1016/j.hrthm.2015.06.039 Google Scholar
  42. 42.
    Pozzo J, Fournier P, Lairez O, Vervueren PL, Delmas C, Elbaz M, Carrie D, Galinier M, Roncalli J (2015) Obesity paradox: origin and best way to assess severity in patients with systolic HF. Obesity (Silver Spring) 23(10):2002–2008.  https://doi.org/10.1002/oby.21216 Google Scholar
  43. 43.
    Ford I, Robertson M, Komajda M, Böhm M, Borer JS, Tavazzi L, Swedberg K (2015) Top ten risk factors for morbidity and mortality in patients with chronic systolic heart failure and elevated heart rate: the SHIFT risk model. Int J Cardiol 184:163–169.  https://doi.org/10.1016/j.ijcard.2015.02.001 Google Scholar
  44. 44.
    Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, Arbab-Zadeh A, Mukherjee D, Lazar JM (2015) Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol 115(10):1428–1434.  https://doi.org/10.1016/j.amjcard.2015.02.024 Google Scholar
  45. 45.
    Dalos D, Mascherbauer J, Zotter-Tufaro C, Duca F, Kammerlander AA, Aschauer S, Bonderman D (2016) Functional status, pulmonary artery pressure, and clinical outcomes in heart failure with preserved ejection fraction. J Am Coll Cardiol 68(2):189–199.  https://doi.org/10.1016/j.jacc.2016.04.052 Google Scholar
  46. 46.
    Zamora E, Lupón J, Enjuanes C, Pascual-Figal D, de Antonio M, Domingo M, Comín-Colet J, Vila J, Peñafiel J, Farré N, Alonso N, Santesmases J, Troya M, Bayés-Genís A (2016) No benefit from the obesity paradox for diabetic patients with heart failure. Eur J Heart Fail 18(7):851–858.  https://doi.org/10.1002/ejhf.576 Google Scholar
  47. 47.
    Heo S, Moser DK, Pressler SJ, Dunbar SB, Lee KS, Kim J, Lennie TA (2017) Association between obesity and heart failure symptoms in male and female patients. Clin Obes 7(2):77–85.  https://doi.org/10.1111/cob.12179 Google Scholar
  48. 48.
    Qin W, Liu F, Wan C (2017) A U-shaped association of body mass index and all-cause mortality in heart failure patients: a dose-response meta-analysis of prospective cohort studies. Cardiovasc Ther 35(2).  https://doi.org/10.1111/1755-5922.12232
  49. 49.
    Vlaras E, Giakoumidakis K, Fotos NV, Chatziefstratiou AA, Brokalaki H (2017) The presence of obesity paradox in Greek patients with chronic heart failure. Pragmat Obs Res 8:183–187.  https://doi.org/10.2147/POR.S145683 Google Scholar
  50. 50.
    Tsujimoto T, Kajio H (2017) Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol 70(22):2739–2749.  https://doi.org/10.1016/j.jacc.2017.09.1111 Google Scholar
  51. 51.
    Chioncel O, Lainscak M, Seferovic PM, Anker SD, Crespo-Leiro MG, Harjola VP, Parissis J, Laroche C, Piepoli MF, Fonseca C, Mebazaa A, Lund L, Ambrosio GA, Coats AJ, Ferrari R, Ruschitzka F, Maggioni AP, Filippatos G (2017) Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 19(12):1574–1585.  https://doi.org/10.1002/ejhf.813 Google Scholar
  52. 52.
    Milajerdi A, Djafarian K, Shab-Bidar S, Speakman JR (2018) Pre- and post-diagnosis body mass index and heart failure mortality: a dose-response meta-analysis of observational studies reveals greater risk of being underweight than being overweight. Obes Rev 20(2):252–261.  https://doi.org/10.1111/obr.12777 Google Scholar
  53. 53.
    Streng KW, Voors AA, Hillege HL, Anker SD, Cleland JG, Dickstein K, Filippatos G, Metra M, Ng LL, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zwinderman AH, Zannad F, Damman K, van der Meer P, Lang CC (2018) Waist-to-hip ratio and mortality in heart failure. Eur J Heart Fail 20(9):1269–1277.  https://doi.org/10.1002/ejhf.1244 Google Scholar
  54. 54.
    Thomas E, Gupta PP, Fonarow GC, Horwich TB (2019) Bioelectrical impedance analysis of body composition and survival in patients with heart failure. Clin Cardiol 42(1):129–135.  https://doi.org/10.1002/clc.23118 Google Scholar
  55. 55.
    Zhang J, Begley A, Jackson R, Harrison M, Pellicori P, Clark AL, Cleland JGF (2019) Body mass index and all-cause mortality in heart failure patients with normal and reduced ventricular ejection fraction: a dose-response meta-analysis. Clin Res Cardiol 108(2):119–132.  https://doi.org/10.1007/s00392-018-1302-7 Google Scholar
  56. 56.
    Melenovsky V, Kotrc M, Borlaug BA, Marek T, Kovar J, Malek I, Kautzner J (2013) Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol 62(18):1660–1670.  https://doi.org/10.1016/j.jacc.2013.06.046 Google Scholar
  57. 57.
    Nochioka K, Sakata Y, Takahashi J, Miyata S, Miura M, Takada T, Fukumoto Y, Shiba N, Shimokawa H, for the CHART-2 Investigators (2013) Prognostic impact of nutritional status in asymptomatic patients with cardiac diseases: a report from the CHART-2 study. Circ J 77(9):2318–2326.  https://doi.org/10.1253/circj.CJ-13-0127 Google Scholar
  58. 58.
    Narumi T, Arimoto T, Funayama A, Kadowaki S, Otaki Y, Nishiyama S, Takahashi H, Shishido T, Miyashita T, Miyamoto T, Watanabe T, Kubota I (2013) Prognostic importance of objective nutritional indexes in patients with chronic heart failure. J Cardiol 62(5):307–313.  https://doi.org/10.1016/j.jjcc.2013.05.007 Google Scholar
  59. 59.
    Zuchinali P, Souza GC, Alves FD, d’Almeida KS, Goldraich LA, Clausell NO et al (2013) Triceps skinfold as a prognostic predictor in outpatient heart failure. Arq Bras Cardiol 101(5):434–441.  https://doi.org/10.5935/abc.20130185 Google Scholar
  60. 60.
    Gouya G, Voithofer P, Neuhold S, Storka A, Vila G, Pacher R, Wolzt M, Hülsmann M (2014) Association of nutritional risk index with metabolic biomarkers, appetite-regulatory hormones and inflammatory biomarkers and outcome in patients with chronic heart failure. Int J Clin Pract 68(11):1293–1300.  https://doi.org/10.1111/ijcp.12513 Google Scholar
  61. 61.
    Rossignol P, Masson S, Barlera S, Girerd N, Castelnovo A, Zannad F, Clemenza F, Tognoni G, Anand IS, Cohn JN, Anker SD, Tavazzi L, Latini R, on the behalf of GISSI-HF and Val-HeFT Investigators (2015) Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: insights from the GISSI-HF and Val-HeFT trials. Eur J Heart Fail 17(4):424–433.  https://doi.org/10.1002/ejhf.240 Google Scholar
  62. 62.
    Gastelurrutia P, Lupón J, de Antonio M, Zamora E, Domingo M, Urrutia A, Altimir S, Coll R, Díez C, Bayes-Genis A (2015) Body mass index, body fat, and nutritional status of patients with heart failure: the PLICA study. Clin Nutr 34(6):1233–1238.  https://doi.org/10.1016/j.clnu.2014.12.013 Google Scholar
  63. 63.
    Narumi T, Watanabe T, Kadowaki S, Takahashi T, Yokoyama M, Kinoshita D, Honda Y, Funayama A, Nishiyama S, Takahashi H, Arimoto T, Shishido T, Miyamoto T, Kubota I (2015) Sarcopenia evaluated by fat-free mass index is an important prognostic factor in patients with chronic heart failure. Eur J Intern Med 26(2):118–122.  https://doi.org/10.1016/j.ejim.2015.01.008 Google Scholar
  64. 64.
    Tevik K, Thürmer H, Husby MI, de Soysa AK, Helvik AS (2015) Nutritional risk screening in hospitalized patients with heart failure. Clin Nutr 34(2):257–264.  https://doi.org/10.1016/j.clnu.2014.03.014 Google Scholar
  65. 65.
    Song EK, Moser DK, Kang SM, Lennie TA (2015) Association of depressive symptoms and micronutrient deficiency with cardiac event-free survival in patients with heart failure. J Card Fail 21(12):945–951.  https://doi.org/10.1016/j.cardfail.2015.10.007 Google Scholar
  66. 66.
    Tevik K, Thürmer H, Husby MI, de Soysa AK, Helvik AS (2016) Nutritional risk is associated with long term mortality in hospitalized patients with chronic heart failure. Clin Nutr ESPEN 12:e20–e29.  https://doi.org/10.1016/j.clnesp.2016.02.095 Google Scholar
  67. 67.
    Nakagomi A, Kohashi K, Morisawa T, Kosugi M, Endoh I, Kusama Y, Atarashi H, Shimizu W (2016) Nutritional status is associated with inflammation and predicts a poor outcome in patients with chronic heart failure. J Atheroscler Thromb 23(6):713–727.  https://doi.org/10.5551/jat.31526 Google Scholar
  68. 68.
    Sargento L, Vicente Simões A, Rodrigues J, Longo S, Lousada N, Palma Dos Reis R (2017) Geriatric nutritional risk index as a nutritional and survival risk assessment tool in stable outpatients with systolic heart failure. Nutr Metab Cardiovasc Dis 27(5):430–437.  https://doi.org/10.1016/j.numecd.2017.02.003 Google Scholar
  69. 69.
    Huang W, Chai SC, Lee SGS, MacDonald MR, Leong KTG (2017) Prognostic factors after index hospitalization for heart failure with preserved ejection fraction. Am J Cardiol 119(12):2017–2020.  https://doi.org/10.1016/j.amjcard.2017.03.032 Google Scholar
  70. 70.
    Zhao Q, Li J, Yang J, Li R (2017) Association of total cholesterol and HDL-C levels and outcome in coronary heart disease patients with heart failure. Medicine (Baltimore) 96(9):e6094.  https://doi.org/10.1097/MD.0000000000006094 Google Scholar
  71. 71.
    La Rovere MT, Maestri R, Olmetti F, Paganini V, Riccardi G, Riccardi R et al (2017) Additional predictive value of nutritional status in the prognostic assessment of heart failure patients. Nutr Metab Cardiovasc Dis 27(3):274–280.  https://doi.org/10.1016/j.numecd.2016.09.009 Google Scholar
  72. 72.
    Joaquín C, Puig R, Gastelurrutia P, Lupón J, de Antonio M, Domingo M, Moliner P, Zamora E, Martin M, Alonso N, Puig-Domingo M, Bayes-Genis A (2018) Mini nutritional assessment is a better predictor of mortality than subjective global assessment in heart failure out-patients. Clin Nutr.  https://doi.org/10.1016/j.clnu.2018.12.001
  73. 73.
    Hsu JC, Varosy PD, Bao H, Wang Y, Curtis JP, Marcus GM (2012) Low body mass index but not obesity is associated with in-hospital adverse events and mortality among implantable cardioverter-defibrillator recipients: insights from the National Cardiovascular Data Registry. J Am Heart Assoc 1(6):e003863.  https://doi.org/10.1161/JAHA.112.003863 Google Scholar
  74. 74.
    Cai C, Hua W, Ding LG, Wang J, Chen KP, Yang XW, Liu ZM, Zhang S (2014) Association of body mass index with cardiac reverse remodeling and long-term outcome in advanced heart failure patients with cardiac resynchronization therapy. Circ J 78(12):2899–2907.  https://doi.org/10.1253/circj.CJ-14-0812 Google Scholar
  75. 75.
    Aktas MK, Zareba W, Huang DT, McNitt S, Polonsky S, Chen L, Stockburger M, Merkely B, Moss AJ, Kutyifa V (2014) The effect of weight loss on clinical outcomes in patients implanted with a cardiac resynchronization therapy device—a MADIT-CRT substudy. J Card Fail 20(3):183–189.  https://doi.org/10.1016/j.cardfail.2013.12.012 Google Scholar
  76. 76.
    Yanagisawa S, Inden Y, Shimano M, Yoshida N, Ishikawa S, Kato H, Okumura S, Miyoshi-Fujii A, Nagao T, Yamamoto T, Mizutani Y, Ito T, Hirai M, Murohara T (2015) Impact of cardiac resynchronization therapy-defibrillator implantation on the association between body mass index and prognosis in patients with heart failure. J Interv Card Electrophysiol 43(3):269–277.  https://doi.org/10.1007/s10840-015-0015-3 Google Scholar
  77. 77.
    Mohamedali B, Yost G, Bhat G (2015) Obesity as a risk factor for consideration for left ventricular assist devices. J Card Fail 21(10):800–805.  https://doi.org/10.1016/j.cardfail.2015.06.006 Google Scholar
  78. 78.
    Imamura T, Kinugawa K, Nitta D, Inaba T, Maki H, Hatano M, Kinoshita O, Nawata K, Kyo S, Ono M (2015) Readmission due to driveline infection can be predicted by new score by using serum albumin and body mass index during long-term left ventricular assist device support. J Artif Organs 18(2):120–127.  https://doi.org/10.1007/s10047-015-0816-2 Google Scholar
  79. 79.
    Grandin EW, Wand A, Zamani P, Rame JE, Verdino RJ (2016 Dec) Relation of body mass index to long-term survival after cardiac resynchronization therapy. Am J Cardiol 118(12):1861–1867.  https://doi.org/10.1016/j.amjcard.2016.08.079 Google Scholar
  80. 80.
    Daimee UA, Biton Y, Aktas MK, Zannad F, Klein H, Szepietowska B et al (2017) Effect of significant weight change on inappropriate implantable cardioverter-defibrillator therapy. Pacing Clin Electrophysiol 40(1):9–16.  https://doi.org/10.1111/pace.12973 Google Scholar
  81. 81.
    Volkovicher N, Kurihara C, Critsinelis A, Kawabori M, Sugiura T, Manon M 2nd et al (2018) Effect of obesity on outcomes in patients undergoing implantation of continuous-flow left ventricular assist devices. J Artif Organs 21(2):180–187.  https://doi.org/10.1007/s10047-017-1013-2 Google Scholar
  82. 82.
    Yost G, Tatooles A, Bhat G (2018) Preoperative nutritional assessment with the prognostic nutrition index in patients undergoing left ventricular assist device implantation. ASAIO J 64(1):52–55.  https://doi.org/10.1097/MAT.0000000000000625 Google Scholar
  83. 83.
    Critsinelis AC, Kurihara C, Kawabori M, Sugiura T, Lee VV, Civitello AB, Morgan JA (2018) Predictive value of preoperative serum albumin levels on outcomes in patients undergoing LVAD implantation. J Card Surg 33(8):469–478.  https://doi.org/10.1111/jocs.13745 Google Scholar
  84. 84.
    Hullmann JE, Mather PJ (2018) Elevated body mass index is not a risk factor for adverse outcomes following ventricular assist device implantation. Prog Transplant 28(2):157–162.  https://doi.org/10.1177/1526924818765817 Google Scholar
  85. 85.
    Uribarri A, Rojas SV, Hanke JS, Dogan G, Siemeni T, Kaufeld T et al (2018) Prognostic value of the nutritional risk index in candidates for continuous flow left ventricular assist device therapy. Rev Esp Cardiol.  https://doi.org/10.1016/j.rec.2018.05.029
  86. 86.
    Wu C, Kato TS, Ji R, Zizola C, Brunjes DL, Deng Y, Akashi H, Armstrong HF, Kennel PJ, Thomas T, Forman DE, Hall J, Chokshi A, Bartels MN, Mancini D, Seres D, Schulze PC (2015) Supplementation of l-alanyl-l-glutamine and fish oil improves body composition and quality of life in patients with chronic heart failure. Circ Heart Fail 8(6):1077–1087.  https://doi.org/10.1161/CIRCHEARTFAILURE.115.002073 Google Scholar
  87. 87.
    Mathew AV, Seymour EM, Byun J, Pennathur S, Hummel SL (2015) Altered metabolic profile with sodium-restricted dietary approaches to stop hypertension diet in hypertensive heart failure with preserved ejection fraction. J Card Fail 21(12):963–967.  https://doi.org/10.1016/j.cardfail.2015.10.003 Google Scholar
  88. 88.
    Deutz NE, Matheson EM, Matarese LE, Luo M, Baggs GE, Nelson JL, Hegazi RA, Tappenden KA, Ziegler TR (2016) Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: a randomized clinical trial. Clin Nutr 35(1):18–26.  https://doi.org/10.1016/j.clnu.2015.12.010 Google Scholar
  89. 89.
    Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, Eggebeen J, Nicklas BJ (2016) Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 315(1):36–46.  https://doi.org/10.1001/jama.2015.17346 Google Scholar
  90. 90.
    Wong CM, Hawkins NM, Jhund PS, MacDonald MR, Solomon SD, Granger CB et al (2013) Clinical characteristics and outcomes of young and very young adults with heart failure: the CHARM programme (candesartan in heart failure assessment of reduction in mortality and morbidity). J Am Coll Cardiol 62(20):1845–1854.  https://doi.org/10.1016/j.jacc.2013.05.072 Google Scholar
  91. 91.
    Vecchié A, Dallegri F, Carbone F, Bonaventura A, Liberale L, Portincasa P, Frühbeck G, Montecucco F (2018) Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur J Intern Med 48:6–17.  https://doi.org/10.1016/j.ejim.2017.10.020 Google Scholar
  92. 92.
    Jefferson K, Ahmed M, Choleva M, Mak S, Allard JP, Newton GE, Arcand JA (2015) Effect of a sodium-restricted diet on intake of other nutrients in heart failure: implications for research and clinical practice. J Card Fail 21(12):959–962.  https://doi.org/10.1016/j.cardfail.2015.10.002 Google Scholar
  93. 93.
    Motie M, Evangelista LS, Horwich T, Hamilton M, Lombardo D, Cooper DM, Galassetti PR, Fonarow GC (2013) Pro-HEART—a randomized clinical trial to test the effectiveness of a high protein diet targeting obese individuals with heart failure: rationale, design and baseline characteristics. Contemp Clin Trials 36(2):371–381.  https://doi.org/10.1016/j.cct.2013.08.004 Google Scholar
  94. 94.
    Lavie CJ, De Schutter A, Alpert MA, Mehra MR, Milani RV, Ventura HO (2014) Obesity paradox, cachexia, frailty, and heart failure. Heart Fail Clin 10(2):319–326.  https://doi.org/10.1016/j.hfc.2013.12.002 Google Scholar
  95. 95.
    Lavie CJ, Alpert MA, Ventura HO (2015 Jan) Risks and benefits of weight loss in heart failure. Heart Fail Clin 11(1):125–131.  https://doi.org/10.1016/j.hfc.2014.08.013. Google Scholar
  96. 96.
    Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB, Milani RV (2018) An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis 61(2):142–150.  https://doi.org/10.1016/j.pcad.2018.07.003 Google Scholar
  97. 97.
    Tadic M, Cuspidi C (2019) Obesity and heart failure with preserved ejection fraction: a paradox or something else? Heart Fail Rev.  https://doi.org/10.1007/s10741-018-09766-x
  98. 98.
    Pandey A, Patel KV, Vaduganathan M, Sarma S, Haykowsky MJ, Berry JD, Lavie CJ (2018) Physical activity, fitness, and obesity in heart failure with preserved ejection fraction. JACC Heart Fail 6(12):975–982.  https://doi.org/10.1016/j.jchf.2018.09.006 Google Scholar
  99. 99.
    Nagarajan V, Kohan L, Holland E, Keeley EC, Mazimba S (2016) Obesity paradox in heart failure: a heavy matter. ESC Heart Fail 3(4):227–234.  https://doi.org/10.1002/ehf2.12120 Google Scholar
  100. 100.
    Gupta PP, Fonarow GC, Horwich TB (2015) Obesity and the obesity paradox in heart failure. Can J Cardiol 31(2):195–202.  https://doi.org/10.1016/j.cjca.2014.08.004 Google Scholar
  101. 101.
    Carbone S, Lavie CJ, Arena R (2017) Obesity and heart failure: focus on the obesity paradox. Mayo Clin Proc 92(2):266–279.  https://doi.org/10.1016/j.mayocp.2016.11.001 Google Scholar
  102. 102.
    Oga EA, Eseyin OR (2016) The obesity paradox and heart failure: a systematic review of a decade of evidence. J Obes 2016:1–9.  https://doi.org/10.1155/2016/9040248 Google Scholar
  103. 103.
    Lin H, Zhang H, Lin Z, Li X, Kong X, Sun G (2016) Review of nutritional screening and assessment tools and clinical outcomes in heart failure. Heart Fail Rev 21(5):549–565.  https://doi.org/10.1007/s10741-016-9540-0 Google Scholar
  104. 104.
    McDowell K, Petrie MC, Raihan NA, Logue J (2018) Effects of intentional weight loss in patients with obesity and heart failure: a systematic review. Obes Rev 19(9):1189–1204.  https://doi.org/10.1111/obr.12707 Google Scholar
  105. 105.
    Dos Reis Padilha G, Sanches Machado d’Almeida K, Ronchi Spillere S, Corrêa Souza G (2018) Dietary patterns in secondary prevention of heart failure: a systematic review. Nutrients. 10(7):pii: E828.  https://doi.org/10.3390/nu10070828 Google Scholar
  106. 106.
    Sciatti E, Lombardi C, Ravera A, Vizzardi E, Bonadei I, Carubelli V, Gorga E, Metra M (2016) Nutritional deficiency in patients with heart failure. Nutrients. 8(7).  https://doi.org/10.3390/nu8070442
  107. 107.
    Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG et al (2002) Obesity and the risk of heart failure. N Engl J Med 347(5):305–313.  https://doi.org/10.1056/NEJMoa020245 Google Scholar
  108. 108.
    Nishi I, Seo Y, Hamada-Harimura Y, Yamamoto M, Ishizu T, Sugano A, Sato K, Sai S, Obara K, Suzuki S, Koike A, Aonuma K, Ieda M, Ibaraki Cardiovascular Assessment Study‐Heart Failure Investigators (2019) Geriatric nutritional risk index predicts all-cause deaths in heart failure with preserved ejection fraction. ESC Heart Fail 6:396–405.  https://doi.org/10.1002/ehf2.12405 Google Scholar
  109. 109.
    Song EK, Lee Y, Moser DK, Dekker RL, Kang SM, Lennie TA (2014) The link of unintentional weight loss to cardiac event-free survival in patients with heart failure. J Cardiovasc Nurs 29(5):439–447.  https://doi.org/10.1097/JCN.0b013e3182a46ba8 Google Scholar
  110. 110.
    Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R et al (2008) Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 372(9645):1223–1230.  https://doi.org/10.1016/S0140-6736(08)61239-8 Google Scholar
  111. 111.
    Kimmig LM, Karalis DG (2013) Do omega-3 polyunsaturated fatty acids prevent cardiovascular disease? A review of the randomized clinical trials. Lipid Insights 6:13–20.  https://doi.org/10.4137/LPI.S10846 Google Scholar
  112. 112.
    Trippel TD, Anker SD, von Haehling S (2013) The role of micronutrients and macronutrients in patients hospitalized for heart failure. Heart Fail Clin 9(3):345–357.  https://doi.org/10.1016/j.hfc.2013.05.001 Google Scholar
  113. 113.
    Bonilla-Palomas JL, Gámez-López AL, Castillo-Domínguez JC, Moreno-Conde M, López Ibáñez MC, Alhambra Expósito R, Ramiro Ortega E, Anguita-Sánchez MP, Villar-Ráez A (2016) Nutritional intervention in malnourished hospitalized patients with heart failure. Arch Med Res 47(7):535–540.  https://doi.org/10.1016/j.arcmed.2016.11.005 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Vascular and Internal Diseases, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus UniversityToruńPoland
  2. 2.Department of Vascular and Internal DiseasesJan Biziel University Hospital No. 2 in BydgoszczBydgoszczPoland
  3. 3.Department of Allergology, Clinical Immunology and Internal Diseases, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus UniversityToruńPoland

Personalised recommendations