Heart Failure Reviews

, Volume 24, Issue 5, pp 793–803 | Cite as

Novel percutaneous interventional therapies in heart failure with preserved ejection fraction: an integrative review

  • Alexandru Burlacu
  • Paul SimionEmail author
  • Ionut Nistor
  • Adrian Covic
  • Grigore Tinica


Heart failure with preserved ejection fraction (HFpEF) is a common disorder generating high mortality and important morbidity prevalence, with a very limited medical treatment available. Studies have shown that the pathophysiological hallmark of this condition is an elevated left intra-atrial pressure (LAP), exertional dyspnea being its clinical manifestation. The increasing pressure from LA is not based on volume overload (such as in heart failure with reduced ejection fraction) but on a diastolic left ventricular (LV) dysfunction combined with an inter-atrial dyssynchrony mimicking a pseudo-pacemaker syndrome. In this review, we aimed to summarize current knowledge and discuss future directions of the newest interventional percutaneous therapies of HFpEF. Novel interventional approaches developed to counter these mechanisms are as follows: LA decompression (inter-atrial shunt devices), enhancement of LV compliance (LV expanders), and inter-atrial resynchronization therapy (LA permanent pacing). To date, inter-atrial shunt devices (IASD) are the most studied, being the only devices currently tested in a phase 3 trial. Recent data showed that IASD are feasible, safe, and have a short-term clinical benefit in HFpEF patients. LV expanders and LA pacing therapy present with a smaller clinical benefit compared with IASD, but they are safe, without any major adverse outcomes currently noted. With further development and improvement of these mechanism-specific devices, it will be interesting to determine in the future whether a complex intervention of multiple HFpEF device implantation will be safe and have further benefits in HFpEF patients.


HFpEF Interventions Therapy Devices 



This study was funded by the Romanian Academy of Medical Sciences and European Regional Development Fund, MySMIS 107124: Funding Contract 2/Axa 1/31.07.2017/ 107124 SMIS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355(3):251–259. CrossRefPubMedGoogle Scholar
  2. 2.
    Zile MR, Gaasch WH, Anand IS, Haass M, Little WC, Miller AB, Lopez-Sendon J, Teerlink JR, White M, McMurray JJ, Komajda M, McKelvie R, Ptaszynska A, Hetzel SJ, Massie BM, Carson PE (2010) Mode of death in patients with heart failure and a preserved ejection fraction: results from the Irbesartan in Heart Failure With Preserved Ejection Fraction Study (I-Preserve) trial. Circulation 121(12):1393–1405. CrossRefPubMedGoogle Scholar
  3. 3.
    Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ (2018) Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J 39(30):2780–2792. CrossRefPubMedGoogle Scholar
  4. 4.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. CrossRefPubMedGoogle Scholar
  5. 5.
    Roh J, Houstis N, Rosenzweig A (2017) Why don’t we have proven treatments for HFpEF? Circ Res 120(8):1243–1245. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11(9):507–515. CrossRefPubMedGoogle Scholar
  7. 7.
    van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, Linke WA, Laarman GJ, Paulus WJ (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113(16):1966–1973. CrossRefPubMedGoogle Scholar
  8. 8.
    Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271. CrossRefGoogle Scholar
  9. 9.
    Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350(19):1953–1959. CrossRefPubMedGoogle Scholar
  10. 10.
    Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K, Hoffmann W, Poller W, Pauschinger M, Schultheiss HP, Tschope C (2008) Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117(16):2051–2060. CrossRefPubMedGoogle Scholar
  11. 11.
    Kulkarni SS, Sakaria AK, Mahajan SK, Shah KB (2012) Lutembacher’s syndrome. Journal of Cardiovascular Disease Research 3(2):179–181. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Masutani S, Senzaki H (2011) Left ventricular function in adult patients with atrial septal defect: implication for development of heart failure after transcatheter closure. J Card Fail 17(11):957–963. CrossRefPubMedGoogle Scholar
  13. 13.
    Ewert P, Berger F, Nagdyman N, Kretschmar O, Dittrich S, Abdul-Khaliq H, Lange P (2001) Masked left ventricular restriction in elderly patients with atrial septal defects: a contraindication for closure? Catheter Cardiovasc Interv 52(2):177–180CrossRefPubMedGoogle Scholar
  14. 14.
    Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA (2018) A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138(9):861–870. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    De Rosa R, Piscione F, Schranz D, Citro R, Iesu S, Galasso G (2017) Transcatheter implantable devices to monitoring of elevated left atrial pressures in patients with chronic heart failure. Transl Med UniSa 17:19–21PubMedGoogle Scholar
  16. 16.
    Amat-Santos IJ, Nombela-Franco L, Garcia B, Tobar J, Rodes-Cabau J, San Roman JA (2015) The V-Wave device for the treatment of heart failure. Initial experience in Europe. Rev Esp Cardiol 68(9):808–810. CrossRefPubMedGoogle Scholar
  17. 17.
    Amat-Santos IJ, Bergeron S, Bernier M, Allende R, Barbosa Ribeiro H, Urena M, Pibarot P, Verheye S, Keren G, Yaacoby M, Nitzan Y, Abraham WT, Rodes-Cabau J (2015) Left atrial decompression through unidirectional left-to-right interatrial shunt for the treatment of left heart failure: first-in-man experience with the V-Wave device. EuroIntervention 10(9):1127–1131. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rodes-Cabau J, Bernier M, Amat-Santos IJ, Ben Gal T, Nombela-Franco L, Garcia Del Blanco B, Kerner A, Bergeron S, Del Trigo M, Pibarot P, Shkurovich S, Eigler N, Abraham WT (2018) Interatrial shunting for heart failure: early and late results from the first-in-human experience with the V-Wave system. J Am Coll Cardiol Intv 11(22):2300–2310. CrossRefGoogle Scholar
  19. 19.
    Del Trigo M, Bergeron S, Bernier M, Amat-Santos IJ, Puri R, Campelo-Parada F, Altisent OA, Regueiro A, Eigler N, Rozenfeld E, Pibarot P, Abraham WT, Rodes-Cabau J (2016) Unidirectional left-to-right interatrial shunting for treatment of patients with heart failure with reduced ejection fraction: a safety and proof-of-principle cohort study. Lancet 387(10025):1290–1297. CrossRefPubMedGoogle Scholar
  20. 20. UNIoH REducing Lung Congestion Symptoms Using thE V-wavE Shunt in Advanced Heart Failure (RELIEVE-HF). Accessed 4 Dec 2018
  21. 21.
    Kaye D, Shah SJ, Borlaug BA, Gustafsson F, Komtebedde J, Kubo S, Magnin C, Maurer MS, Feldman T, Burkhoff D (2014) Effects of an interatrial shunt on rest and exercise hemodynamics: results of a computer simulation in heart failure. J Card Fail 20(3):212–221. CrossRefPubMedGoogle Scholar
  22. 22.
    Sondergaard L, Reddy V, Kaye D, Malek F, Walton A, Mates M, Franzen O, Neuzil P, Ihlemann N, Gustafsson F (2014) Transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel interatrial implant to lower left atrial pressure. Eur J Heart Fail 16(7):796–801. CrossRefPubMedGoogle Scholar
  23. 23.
    Hasenfuss G, Hayward C, Burkhoff D, Silvestry FE, McKenzie S, Gustafsson F, Malek F, Van der Heyden J, Lang I, Petrie MC, Cleland JG, Leon M, Kaye DM (2016) A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet 387(10025):1298–1304. CrossRefPubMedGoogle Scholar
  24. 24.
    Kaye DM, Hasenfuss G, Neuzil P, Post MC, Doughty R, Trochu JN, Kolodziej A, Westenfeld R, Penicka M, Rosenberg M, Walton A, Muller D, Walters D, Hausleiter J, Raake P, Petrie MC, Bergmann M, Jondeau G, Feldman T, Veldhuisen DJ, Ponikowski P, Silvestry FE, Burkhoff D, Hayward C (2016) One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction. Circ Heart Fail 9(12).
  25. 25.
    Feldman T, Mauri L, Kahwash R, Litwin S, Ricciardi MJ, van der Harst P, Penicka M, Fail PS, Kaye DM, Petrie MC, Basuray A, Hummel SL, Forde-McLean R, Nielsen CD, Lilly S, Massaro JM, Burkhoff D, Shah SJ (2018) Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in patients With Heart Failure]): a phase 2, randomized, sham-controlled trial. Circulation 137(4):364–375. CrossRefPubMedGoogle Scholar
  26. 26.
    Health UNIo A study to evaluate the Corvia Medical, Inc. IASD® System II to reduce elevated left atrial pressure in patients with heart failure Accessed 4 Dec 2018
  27. 27. UNIo A study to evaluate the Corvia Medical, Inc. IASD® System II to REDUCE elevated left atrial pressure in patients with heart failure with reduced ejection fraction. Accessed 4 Dec 2018
  28. 28.
    Patel MB, Samuel BP, Girgis RE, Parlmer MA, Vettukattil JJ (2015) Implantable atrial flow regulator for severe, irreversible pulmonary arterial hypertension. EuroIntervention 11(6):706–709. CrossRefPubMedGoogle Scholar
  29. 29.
    Gupta A, Bailey SR (2018) Update on devices for diastolic dysfunction: options for a no option condition? Curr Cardiol Rep 20(10):85. CrossRefPubMedGoogle Scholar
  30. 30.
    Rajeshkumar R, Pavithran S, Sivakumar K, Vettukattil JJ (2017) Atrial septostomy with a predefined diameter using a novel occlutech atrial flow regulator improves symptoms and cardiac index in patients with severe pulmonary arterial hypertension. Catheter Cardiovasc Interv 90(7):1145–1153. CrossRefPubMedGoogle Scholar
  31. 31. UNIo The prelieve trial- pilot study to assess safety and efficacy of a novel atrial flow regulator (AFR) in heart failure patients (PRELIEVE). NCT03030274 Accessed 3 Dec 2018
  32. 32.
    T S (2010) Reversing heart failure: diastolic recoil in a proposed cardiac support deviceGoogle Scholar
  33. 33.
    M K Heart Failure With Preserved EFx: Corassist. In: TCT 2012, San Francisco (2012)Google Scholar
  34. 34.
    A E (2013) First in man implantation of intra-ventricular device for diastolic heart failure. TCT 2013, San FranciscoGoogle Scholar
  35. 35. UNIo (2015) CORolla® TAA for heart failure with preserved ejection fraction (HFpEF) and diastolic dysfunction (DD). Accessed 3 Dec 2018
  36. 36.
    TCT-481: Diastolic heart failure – innovative extra and intra ventricular solutions (2011) J Am Coll Cardiol 58 (20 Supplement):B131.
  37. 37.
    Morris DA, Gailani M, Vaz Perez A, Blaschke F, Dietz R, Haverkamp W, Ozcelik C (2011) Left atrial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr 24(6):651–662. CrossRefPubMedGoogle Scholar
  38. 38.
    Maass AH, Van Gelder IC (2012) Atrial resynchronization therapy: a new concept for treatment of heart failure with preserved ejection fraction and prevention of atrial fibrillation? Eur J Heart Fail 14(3):227–229. CrossRefPubMedGoogle Scholar
  39. 39.
    Daubert C, Leclercq C, Le Breton H, Gras D, Pavin D, Pouvreau Y, Van Verooij P, Bakels N, Mabo P (1997) Permanent left atrial pacing with a specifically designed coronary sinus lead. Pacing Clin Electrophysiol 20(11):2755–2764CrossRefPubMedGoogle Scholar
  40. 40.
    Sanchis L, Vannini L, Gabrielli L, Duchateau N, Falces C, Andrea R, Bijnens B, Sitges M (2015) Interatrial Dyssynchrony may contribute to heart failure symptoms in patients with preserved ejection fraction. Echocardiography 32(11):1655–1661. CrossRefPubMedGoogle Scholar
  41. 41.
    Liu S, Guan Z, Zheng X, Meng P, Wang Y, Li Y, Zhang Y, Yang J, Jia D, Ma C (2018) Impaired left atrial systolic function and inter-atrial dyssynchrony may contribute to symptoms of heart failure with preserved left ventricular ejection fraction: a comprehensive assessment by echocardiography. Int J Cardiol 257:177–181. CrossRefPubMedGoogle Scholar
  42. 42.
    Eicher JC, Laurent G, Mathe A, Barthez O, Bertaux G, Philip JL, Dorian P, Wolf JE (2012) Atrial dyssynchrony syndrome: an overlooked phenomenon and a potential cause of ‘diastolic’ heart failure. Eur J Heart Fail 14(3):248–258. CrossRefPubMedGoogle Scholar
  43. 43.
    Laurent G, Eicher JC, Mathe A, Bertaux G, Barthez O, Debin R, Billard C, Philip JL, Wolf JE (2013) Permanent left atrial pacing therapy may improve symptoms in heart failure patients with preserved ejection fraction and atrial dyssynchrony: a pilot study prior to a national clinical research programme. Eur J Heart Fail 15(1):85–93. CrossRefPubMedGoogle Scholar
  44. 44.
    Kleemann T (2015) Cardiac contractility modulation. A new form of therapy for patients with heart failure and narrow QRS complex? Herz 40(7):945–951. CrossRefPubMedGoogle Scholar
  45. 45.
    Abi-Samra F, Gutterman D (2016) Cardiac contractility modulation: a novel approach for the treatment of heart failure. Heart Fail Rev 21(6):645–660. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pappone C, Augello G, Rosanio S, Vicedomini G, Santinelli V, Romano M, Agricola E, Maggi F, Buchmayr G, Moretti G, Mika Y, Ben-Haim SA, Wolzt M, Stix G, Schmidinger H (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427CrossRefPubMedGoogle Scholar
  47. 47.
    Tschope C, Van Linthout S, Spillmann F, Klein O, Biewener S, Remppis A, Gutterman D, Linke WA, Pieske B, Hamdani N, Roser M (2016) Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF. Int J Cardiol 203:1061–1066. CrossRefPubMedGoogle Scholar
  48. 48.
    Borggrefe M, Mann DL (2018) Cardiac contractility modulation in 2018. Circulation 138(24):2738–2740. CrossRefPubMedGoogle Scholar
  49. 49. UNIo (2017) CCM in heart failure with preserved ejection fraction (CCM-HFpEF). Accessed 3 Dec 2018
  50. 50.
    Yap SC (2015) Atrial fibrillation and stroke after atrial septal defect closure. Is earlier closure warranted? Heart 101(9):661–662. CrossRefPubMedGoogle Scholar
  51. 51.
    Mojadidi MK, Zaman MO, Elgendy IY, Mahmoud AN, Patel NK, Agarwal N, Tobis JM, Meier B (2018) Cryptogenic stroke and patent foramen ovale. J Am Coll Cardiol 71(9):1035–1043. CrossRefPubMedGoogle Scholar
  52. 52.
    McCambridge J, Witton J, Elbourne DR (2014) Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. J Clin Epidemiol 67(3):267–277. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Burkhoff D, Maurer MS, Joseph SM, Rogers JG, Birati EY, Rame JE, Shah SJ (2015) Left atrial decompression pump for severe heart failure with preserved ejection fraction: theoretical and clinical considerations. JACC Heart Fail 3(4):275–282. CrossRefPubMedGoogle Scholar
  54. 54.
    Granegger M, Dave H, Knirsch W, Thamsen B, Schweiger M, Hubler M (2018) A valveless pulsatile pump for the treatment of heart failure with preserved ejection fraction: a simulation study. Cardiovasc Eng Technol 10:69–79. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Interventional CardiologyCardiovascular Diseases InstituteBucharestRomania
  2. 2.‘Grigore T. Popa’ University of MedicineIasiRomania
  3. 3.Methods Support Team ERBPGhent UniversityGhentBelgium
  4. 4.Nephrology Clinic, Dialysis and Renal Transplant Center‘C.I. Parhon’ University HospitalIasiRomania
  5. 5.Department of Cardiovascular SurgeryCardiovascular Diseases InstituteBucharestRomania

Personalised recommendations