Heart Failure Reviews

, Volume 24, Issue 5, pp 617–623 | Cite as

Pharmacological management of cardiac cachexia: a review of potential therapy options

  • Melanie RolfeEmail author
  • Amir Kamel
  • Mustafa M. Ahmed
  • Joshua Kramer


Cardiac cachexia is a syndrome of progressive skeletal muscle and fat loss affecting a significant number of congestive heart failure patients. With the potential detrimental effects of cardiac muscle wasting, greater attention is needed to understanding the prevention and treatment of the condition. Potential therapeutic approaches are aimed at the various mechanisms for the pathogenesis of cardiac cachexia including neurohormonal abnormalities, immune activation and inflammation, metabolic hormonal imbalance, and gastrointestinal abnormalities. While there are no current guideline-recommended treatments for the prevention of cardiac cachexia, targeting an imbalance of the renin-angiotensin-aldosterone system with beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers appears to be the most well-studied therapeutic approaches. Treatment of inflammation with monoclonal antibodies, hormonal imbalance with testosterone, and nutritional deficiencies with appetite stimulants has also been suggested. Proposed therapies may prove beneficial in heart failure patients; however, further studies specifically focusing on the cardiac component of cachexia are needed before definitive therapy options can be established.


Cachexia Heart failure Weight loss Inflammation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Anker SD, Coats AJ (1999) Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest. 115(3):836–847CrossRefPubMedGoogle Scholar
  2. 2.
    Loncar G, Springer J, Anker M, Doehner W, Lainscak M (2016) Cardiac cachexia: hic et nunc. J Cachexia Sarcopenia Muscle 7(3):246–260CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2017) Heart Disease and Stroke Statistics-2017 Update: a report from the American Heart Association. Circulation. 135(10):e146–e603CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Okoshi MP, Capalbo RV, Romeiro FG, Okoshi K (2017) Cardiac cachexia: perspectives for prevention and treatment. Arq Bras Cardiol 108(1):74–80PubMedPubMedCentralGoogle Scholar
  5. 5.
    Okoshi MP, Romeiro FG, Paiva SA, Okoshi K (May) Heart failure-induced cachexia. Arq Bras Cardiol 100(5):476–482Google Scholar
  6. 6.
    Sundaram V, Fang JC (2016) Gastrointestinal and liver issues in heart failure. Circulation. 133(17):1696–1703CrossRefPubMedGoogle Scholar
  7. 7.
    Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD (Dec) Cachexia: a new definition. Clin Nutr 27(6):793–799Google Scholar
  8. 8.
    Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, Poole-Wilson PA, Coats AJS (1997) Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 96(2):526–534CrossRefPubMedGoogle Scholar
  9. 9.
    Hryniewicz K, Androne AS, Hudaihed A, Katz SD (2003) Partial reversal of cachexia by beta-adrenergic receptor blocker therapy in patients with chronic heart failure. J Card Fail 9(6):464–468CrossRefPubMedGoogle Scholar
  10. 10.
    Anker SD, Negassa A, Coats AJ et al (2003) Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 361(9363):1077–1083CrossRefPubMedGoogle Scholar
  11. 11.
    Marzetti E, Calvani R, DuPree J, Lees HA, Giovannini S, Seo DO, Buford TW, Sweet K, Morgan D, Strehler KYE, Diz D, Borst SE, Moningka N, Krotova K, Carter CS (2013) Late-life enalapril administration induces nitric oxide-dependent and independent metabolic adaptations in the rat skeletal muscle. Age (Dordr) 35(4):1061–1075CrossRefGoogle Scholar
  12. 12.
    Scherrer-Crosbie M (2015) Losartan: a new treatment for cardiac cachexia? J Mol Cell Cardiol 86:12–13CrossRefPubMedGoogle Scholar
  13. 13.
    Mann DL, McMurray JJ, Packer M et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 109(13):1594–1602CrossRefPubMedGoogle Scholar
  14. 14.
    Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, Investigators A-TTACHF (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 107(25):3133–3140CrossRefPubMedGoogle Scholar
  15. 15.
    Sliwa K, Skudicky D, Candy G, Wisenbaugh T, Sareli P (1998) Randomised investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet. 351(9109):1091–1093CrossRefPubMedGoogle Scholar
  16. 16.
    Steffen BT, Lees SJ, Booth FW (2008) Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia. J Appl Physiol (1985) 105(6):1950–1958CrossRefGoogle Scholar
  17. 17.
    von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD (2017) Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 14(6):323–341CrossRefGoogle Scholar
  18. 18.
    Nagaya N, Uematsu M, Kojima M, Ikeda Y, Yoshihara F, Shimizu W, Hosoda H, Hirota Y, Ishida H, Mori H, Kangawa K (2001) Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation. 104(12):1430–1435CrossRefPubMedGoogle Scholar
  19. 19.
    Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS (2006) Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J 27(1):57–64CrossRefPubMedGoogle Scholar
  20. 20.
    Toma M, McAlister FA, Coglianese EE et al (2012) Testosterone supplementation in heart failure: a meta-analysis. Circ Heart Fail 5(3):315–321CrossRefPubMedGoogle Scholar
  21. 21.
    von Haehling S, Anker SD (2014) Treatment of cachexia: an overview of recent developments. J Am Med Dir Assoc 15(12):866–872CrossRefGoogle Scholar
  22. 22.
    Taylor JK, Pendleton N (2016) Progesterone therapy for the treatment of non-cancer cachexia: a systematic review. BMJ Support Palliat Care 6(3):276–286CrossRefPubMedGoogle Scholar
  23. 23.
    Parker RB, Nappi JM, Cavallari LH et al (2017) Chronic heart failure. Pharmacotherapy: a Pathophysiologic Approach, vol 10e. McGraw-Hill Education, New YorkGoogle Scholar
  24. 24.
    Azhar G, Wei JY (2013) New approaches to treating cardiac cachexia in the older patient. Curr Cardiovasc Risk Rep 7(6):480–484CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pureza V, Florea VG (2013) Mechanisms for cachexia in heart failure. Curr Heart Fail Rep 10(4):307–314CrossRefPubMedGoogle Scholar
  26. 26.
    Florea VG, Henein MY, Rauchhaus M, Koloczek V, Sharma R, Doehner W, Poole-Wilson PA, Coats AJS, Anker SD (2002) The cardiac component of cardiac cachexia. Am Heart J 144(1):45–50CrossRefPubMedGoogle Scholar
  27. 27.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride P, McMurray J, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL, American College of Cardiology Foundation, American Heart Association Task Force on Practice Guidelines (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62(16):e147–e239CrossRefPubMedGoogle Scholar
  28. 28.
    Yoshida T, Tabony AM, Galvez S, Mitch WE, Higashi Y, Sukhanov S, Delafontaine P (2013) Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int J Biochem Cell Biol 45(10):2322–2332CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Springer J, Filippatos G, Akashi YJ, Anker SD (2006) Prognosis and therapy approaches of cardiac cachexia. Curr Opin Cardiol 21(3):229–233CrossRefPubMedGoogle Scholar
  30. 30.
    Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90(4):464–470CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Reid MB, Li YP (2001) Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res 2(5):269–272CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    von Haehling S, Lainscak M, Springer J, Anker SD (2009) Cardiac cachexia: a systematic overview. Pharmacol Ther 121(3):227–252CrossRefGoogle Scholar
  33. 33.
    Shaw SM, Shah MK, Williams SG, Fildes JE (2009) Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail 11(2):113–118CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Colldén G, Tschöp MH, Müller TD (2017) Therapeutic potential of targeting the ghrelin pathway. Int J Mol Sci 18(4)Google Scholar
  35. 35.
    Nagaya N, Kangawa K (2003) Ghrelin improves left ventricular dysfunction and cardiac cachexia in heart failure. Curr Opin Pharmacol 3(2):146–151CrossRefPubMedGoogle Scholar
  36. 36.
    von Haehling S (2015) The wasting continuum in heart failure: from sarcopenia to cachexia. Proc Nutr Soc 74(4):367–377CrossRefGoogle Scholar
  37. 37.
    Volterrani M, Rosano G, Iellamo F (2012) Testosterone and heart failure. Endocrine. 42(2):272–277CrossRefPubMedGoogle Scholar
  38. 38.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200CrossRefPubMedGoogle Scholar
  39. 39.
    Valentova M, von Haehling S, Bauditz J, Doehner W, Ebner N, Bekfani T, Elsner S, Sliziuk V, Scherbakov N, Murín J, Anker SD, Sandek A (2016) Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur Heart J 37(21):1684–1691CrossRefGoogle Scholar
  40. 40.
    Sandek A, Swidsinski A, Schroedl W, Watson A, Valentova M, Herrmann R, Scherbakov N, Cramer L, Rauchhaus M, Grosse-Herrenthey A, Krueger M, von Haehling S, Doehner W, Anker SD, Bauditz J (2014) Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol 64(11):1092–1102CrossRefGoogle Scholar
  41. 41.
    Azhar G, Wei JY (2006) Nutrition and cardiac cachexia. Curr Opin Clin Nutr Metab Care 9(1):18–23CrossRefPubMedGoogle Scholar
  42. 42.
    Sandek A, Anker SD, von Haehling S (2009) The gut and intestinal bacteria in chronic heart failure. Curr Drug Metab 10(1):22–28CrossRefPubMedGoogle Scholar
  43. 43.
    Penna F, Bonetto A, Aversa Z et al (2016) Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting. J Cachexia Sarcopenia Muscle 7(3):345–354CrossRefPubMedGoogle Scholar
  44. 44.
    Cheng M, Gao T, Xi F, Cao C, Chen Y, Zhao C, Li Q, Yu W (2017) Dexmedetomidine ameliorates muscle wasting and attenuates the alteration of hypothalamic neuropeptides and inflammation in endotoxemic rats. PLoS One 12(3):e0174894CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lima AR, Martinez PF, Okoshi K et al (2010) Myostatin and follistatin expression in skeletal muscles of rats with chronic heart failure. Int J Exp Pathol 91(1):54–62CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Trobec K, Kerec Kos M, von Haehling S, Springer J, Anker SD, Lainscak M (2013) Pharmacokinetics of drugs in cachectic patients: a systematic review. PLoS One 8(11):e79603CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lainscak M, Vitale C, Seferovic P, Spoletini I, Cvan Trobec K, Rosano GM (2016) Pharmacokinetics and pharmacodynamics of cardiovascular drugs in chronic heart failure. Int J Cardiol 224:191–198CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Florida College of PharmacyGainesvilleUSA
  2. 2.UF Health Shands HospitalGainesvilleUSA

Personalised recommendations