Advertisement

Heart Failure Reviews

, Volume 24, Issue 4, pp 439–459 | Cite as

Hypertrophic cardiomyopathy: an updated review on diagnosis, prognosis, and treatment

  • George Makavos
  • Chris Κairis
  • Maria-Eirini Tselegkidi
  • Theodoros Karamitsos
  • Angelos G. Rigopoulos
  • Michel Noutsias
  • Ignatios IkonomidisEmail author
Article

Abstract

Hypertrophic cardiomyopathy (HCM) represents a phenotype of left ventricular hypertrophy unexplained by abnormal loading conditions. The definition is based on clinical criteria; however, there are numerous underlying etiologic factors. The MOGE(S) classification provides a standardized approach for multimodal characterization of HCM. HCM is associated with increased morbidity and mortality, and especially the assessment of the risk of sudden cardiac death is of paramount importance. In this review, we summarize essential knowledge and recently published data on clinical presentation, diagnosis, genetic analyses, differential diagnosis, prognosis, and treatment options that are necessary for understanding and management of HCM.

Keywords

Hypertrophic cardiomyopathy Etiology Diagnosis Treatment 

Abbreviations

ASA

Alcohol septal ablation

CMR

Cardiac magnetic resonance

CT

Computed tomography

CAD

Coronary artery disease

ECV

Extracellular volume

HCM

Hypertrophic cardiomyopathy

HOCM

Hypertrophic obstructive cardiomyopathy

LA

Left atrial

LGE

Late gadolinium enhancement

LV

Left ventricular

LVEF

Left ventricular ejection fraction

LVOT

Left ventricular outflow tract

SAM

Systolic anterior motion

TDI

Tissue Doppler imaging

TEE

Transesophageal echocardiography

Notes

Compliance with ethical standards

Disclosures

Michel Noutsias has received grants from the Deutsche Forschungsgemeinschaft (DFG) through the Sonderforschungsbereich Transregio 19 “Inflammatory Cardiomyopathy” (SFB TR19) (TP B2) and from the University Hospital Giessen and Marburg Foundation Grant “T cell functionality” (UKGM 10/2009). Michel Noutsias has been consultant to the IKDT (Institute for Cardiac Diagnosis and Therapy GmbH, Berlin) in 2004–2008, and has received honoraria for presentations and/or participated in advisory boards from Abiomed, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Fresenius, Miltenyi Biotech, Novartis, Pfizer, and Zoll.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276Google Scholar
  2. 2.
    Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur Heart J 35:2733–2779Google Scholar
  3. 3.
    Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ (2005) Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin Proc 80:739–744Google Scholar
  4. 4.
    Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, Kucherlapati R, Towbin JA, Seidman JG, Seidman CE (2008) Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med 358:1899–1908Google Scholar
  5. 5.
    Olivotto I, Girolami F, Ackerman MJ, Nistri S, Bos JM, Zachara E, Ommen SR, Theis JL, Vaubel RA, Re F, Armentano C, Poggesi C, Torricelli F, Cecchi F (2008) Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc 83:630–638Google Scholar
  6. 6.
    Olivotto I, Girolami F, Sciagra R, Ackerman MJ, Sotgia B, Bos JM, Nistri S, Sgalambro A, Grifoni C, Torricelli F, Camici PG, Cecchi F (2011) Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol 58:839–848Google Scholar
  7. 7.
    Charron P, Villard E, Sebillon P, Laforet P, Maisonobe T, Duboscq-Bidot L, Romero N, Drouin-Garraud V, Frebourg T, Richard P, Eymard B, Komajda M (2004) Danon’s disease as a cause of hypertrophic cardiomyopathy: a systematic survey. Heart 90:842–846Google Scholar
  8. 8.
    Elliott P, Baker R, Pasquale F, Quarta G, Ebrahim H, Mehta AB, Hughes DA (2011) Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry disease survey. Heart 97:1957–1960Google Scholar
  9. 9.
    Filla A, De Michele G, Cavalcanti F, Pianese L, Monticelli A, Campanella G, Cocozza S (1996) The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet 59:554–560Google Scholar
  10. 10.
    Rapezzi C, Quarta CC, Obici L, Perfetto F, Longhi S, Salvi F, Biagini E, Lorenzini M, Grigioni F, Leone O, Cappelli F, Palladini G, Rimessi P, Ferlini A, Arpesella G, Pinna AD, Merlini G, Perlini S (2013) Disease profile and differential diagnosis of hereditary transthyretin-related amyloidosis with exclusively cardiac phenotype: an Italian perspective. Eur Heart J 34:520–528Google Scholar
  11. 11.
    Westphal JG, Rigopoulos AG, Bakogiannis C, Ludwig SE, Mavrogeni S, Bigalke B, Doenst T, Pauschinger M, Tschope C, Schulze PC, Noutsias M (2017) The MOGE(S) classification for cardiomyopathies: current status and future outlook. Heart Fail Rev 22(6):743–752Google Scholar
  12. 12.
    Rapezzi C, Arbustini E, Caforio AL, Charron P, Gimeno-Blanes J, Helio T, Linhart A, Mogensen J, Pinto Y, Ristic A, Seggewiss H, Sinagra G, Tavazzi L, Elliott PM (2013) Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESCWorking Group on Myocardial and Pericardial Diseases. Eur Heart J 34:1448–1458Google Scholar
  13. 13.
    Veselka J, Anavekar NS, Charron P (2017) Hypertrophic obstructive cardiomyopathy. Lancet.  https://doi.org/10.1016/S0140-6736(16)31321-6
  14. 14.
    Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, Nistri S, Cecchi F, Udelson JE, Maron BJ (2006) Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 114(21):2232–2239Google Scholar
  15. 15.
    Minami Y, Kajimoto K, Terajima Y, Yashiro B, Okayama D, Haruki S, Nakajima T, Kawashiro N, Kawana M, Hagiwara N (2011) Clinical implications of midventricular obstruction in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 57:2346–2355Google Scholar
  16. 16.
    Takeda I, Sekine M, Matsushima H, Hosomi N, Nakamura T, Ohtsuki T, Yamawaki T, Matsumoto M (2011) Two cases of cerebral embolism caused by apical thrombi in midventricular obstructive cardiomyopathy. Intern Med 50:1059–1060Google Scholar
  17. 17.
    Dominguez F, González-López E, Padron-Barthe L, Cavero MA, Garcia-Pavia P (2018) Role of echocardiography in the diagnosis and management of hypertrophic cardiomyopathy. Heart 104:261–273Google Scholar
  18. 18.
    Yang H, Carasso S, Woo A, Jamorski M, Nikonova A, Wigle ED, Rakowski H (2010) Hypertrophy pattern and regional myocardial mechanics are related in septal and apical hypertrophic cardiomyopathy. J Am Soc Echocardiogr 23:1081–1089Google Scholar
  19. 19.
    Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG (2014) Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 7:11–19Google Scholar
  20. 20.
    Liu H, Pozios I, Haileselassie B, Nowbar A, Sorensen LL, Phillip S, Lu DY, Ventoulis I, Luo H, Abraham MR, Abraham TP (2017) Role of global longitudinal strain in predicting outcomes in hypertrophic cardiomyopathy. Am J Cardiol 120:670–675Google Scholar
  21. 21.
    Nagueh SF, Smiseth OA, Appleton CP, Byrd BF III, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD, Houston, Texas; Oslo, Norway; Phoenix, Arizona; Nashville, Tennessee; Hamilton, Ontario, Canada; Uppsala, Sweden; Ghent and Liège, Belgium; Cleveland, Ohio; Novara, Italy; Rochester, Minnesota; Bucharest, Romania; and St. Louis, Missouri (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 17:1321–1360Google Scholar
  22. 22.
    Rickers C, Wilke NM, Jerosch-Herold M, Casey SA, Panse P, Panse N, Weil J, Zenovich AG, Maron BJ (2005) Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation 112:855–861Google Scholar
  23. 23.
    Maron MS, Finley JJ, Bos JM, Hauser TH, Manning WJ, Haas TS, Lesser JR, Udelson JE, Ackerman MJ, Maron BJ (2008) Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation 118:1541–1549Google Scholar
  24. 24.
    Maron MS, Rowin EJ, Lin D, Appelbaum E, Chan RH, Gibson CM, Lesser JR, Lindberg J, Haas TS, Udelson JE, Manning WJ, Maron BJ (2012) Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 5:441–447Google Scholar
  25. 25.
    Rudolph A, Abdel-Aty H, Bohl S, Boye P, Zagrosek A, Dietz R, Schulz-Menger J (2009) Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol 53:284–291Google Scholar
  26. 26.
    Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, Camici PG (2009) The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol 54:866–875Google Scholar
  27. 27.
    Leschka S, Koepfl IP, Husmann L et al (2008) Myocardial bridging: depiction rate and morphology at CT coronary angiography— comparison with conventional coronary angiography. Radiology 246:754–762Google Scholar
  28. 28.
    Shapiro LM, McKenna WJ (1983) Distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy: a two-dimensional echocardiographic study. J Am Coll Cardiol 2:437–444Google Scholar
  29. 29.
    Efthimiadis GK, Pagourelias ED, Parcharidou D, Gossios T, Kamperidis V, Theofilogiannakos EK, Pappa Z, Meditskou S, Hadjimiltiades S, Pliakos C, Karvounis H, Styliadis IH (2013) Clinical characteristics and natural history of hypertrophic cardiomyopathy with midventricular obstruction. Circ J 77:2366–2374Google Scholar
  30. 30.
    Alfonso F, Frenneaux MP, McKenna WJ (1989) Clinical sustained uniform ventricular tachycardia in hypertrophic cardiomyopathy: association with left ventricular apical aneurysm. Br Heart J 61:178–181Google Scholar
  31. 31.
    Garcia-Pavia P, Vαzquez ME, Segovia J et al (2011) Genetic basis of end-stage hypertrophic cardiomyopathy. Eur J Heart Fail 13:1193–1201Google Scholar
  32. 32.
    Galati G, Leone O, Pasquale F et al (2016) Histological and histometric characterization of myocardial fibrosis in end-stage hypertrophic cardiomyopathy: a clinical-pathological study of 30 explanted hearts. Circ Heart Fail 9:e003090Google Scholar
  33. 33.
    Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P, Helio T, Keren A, McKenna WJ, Monserrat L, Pankuweit S, Perrot A, Rapezzi C, Ristic A, Seggewiss H, van Langen I, Tavazzi L (2010) Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 31:2715–2726Google Scholar
  34. 34.
    Ingles J, McGaughran J, Scuffham PA, Atherton J, Semsarian C (2012) A cost-effectiveness model of genetic testing for the evaluation of families with hypertrophic cardiomyopathy. Heart 98:625–630Google Scholar
  35. 35.
    Maron MS, Olivotto I, Harrigan C, Appelbaum E, Gibson CM, Lesser JR, Haas TS, Udelson JE, Manning WJ, Maron BJ (2011) Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation 124:40–47Google Scholar
  36. 36.
    Gray B, Ingles J, Semsarian C (2011) Natural history of genotype positive–phenotype negative patients with hypertrophic cardiomyopathy. Int J Cardiol 152:258–259Google Scholar
  37. 37.
    Maron BJ, Udelson JE, Bonow RO, Nishimura RA, Ackerman MJ, Estes NAM III, Cooper LT Jr, Link MS, Maron MS (2015) Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis. J Am Coll Cardiol 66:2362–2371Google Scholar
  38. 38.
    Pelliccia A, Maron MS, Maron BJ (2012) Assessment of left ventricular hypertrophy in a trained athlete: differential diagnosis of physiologic athlete's heart from pathologic hypertrophy. Prog Cardiovasc Dis 54:387–396Google Scholar
  39. 39.
    Caselli S, Maron MS, Urbano-Moral JA, Pandian NG, Maron BJ, Pelliccia A (2014) Differentiating left ventricular hypertrophy in athletes from that in patients with hypertrophic cardiomyopathy. Am J Cardiol 114:1383–1389Google Scholar
  40. 40.
    Galderisi M, Cardim N, Antonello D’Andrea A et al (2015) The multi-modality cardiac imaging approach to the athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:353–353rGoogle Scholar
  41. 41.
    Maron BJ, Pelliccia A, Spataro A, Granata M (1993) Reduction in left ventricular wall thickness after deconditioning in highly trained Olympic athletes. Br Heart J 69:125–128Google Scholar
  42. 42.
    Swoboda PP, McDiarmid AK, Erhayiem B et al (2016) Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete’s heart. J Am Coll Cardiol 67:2189–2190Google Scholar
  43. 43.
    Pewsner D, Juni P, Egger M, Battaglia M, Sundstrom J, Bachmann LM (2007) Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic review. BMJ 335:711Google Scholar
  44. 44.
    Cuspidi C, Negri F, Muiesan ML, Capra A, Lonati L, Milan A, Sala C, Longo M, Morganti A (2011) Prevalence and severity of echocardiographic left ventricular hypertrophy in hypertensive patients in clinical practice. Blood Press 20:3–9Google Scholar
  45. 45.
    Peterson GE, de Backer T, Contreras G, Wang X, Kendrick C, Greene T, Appel LJ, Randall OS, Lea J, Smogorzewski M, Vagaonescu T, Phillips RA (2013) Relationship of left ventricular hypertrophy and diastolic function with cardiovascular and renal outcomes in African Americans with hypertensive chronic kidney disease. Hypertension 62:518–525Google Scholar
  46. 46.
    Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, Snapinn S, Harris KE, Aurup P, Edelman JM, Wedel H, Lindholm LH, Dahlof B (2004) Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA 292:2343–2349Google Scholar
  47. 47.
    Linhart A, Perry M, Elliott PM (2007) The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart 93:528–535Google Scholar
  48. 48.
    Moona JC, Sachdevb B, Elkington AG et al (2003) Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 24:2151–2155Google Scholar
  49. 49.
    Namdar M. Electrocardiographic changes and arrhythmia in Fabry disease. Frontiers in Cardiovascular Medicine | www.frontiersin.org March 2016 | Volume 3 | Article 7
  50. 50.
    Sperry BW, Vranian MN, Hachamovitch R et al (2016) Are classic predictors of voltage valid in cardiac amyloidosis? A contemporary analysis of electrocardiographic findings. Int J Cardiol 214:477–481Google Scholar
  51. 51.
    Rapezzi C, Lorenzini M, Longhi S et al (2015) Cardiac amyloidosis: the great pretender. Heart Fail Rev 20:117–124Google Scholar
  52. 52.
    Klein AL, Hatle LK, Taliercio CP et al (1991) Prognostic significance of Doppler measures of diastolic function in cardiac amyloidosis. A Doppler echocardiography study. Circulation 83:808–816 32Google Scholar
  53. 53.
    Belenkie I, MacDonald RP, Smith ER (1988) Localized septal hypertrophy: part of the spectrum of hypertrophic cardiomyopathy or an incidental echocardiographic finding? Am Heart J 115:385–390Google Scholar
  54. 54.
    Canepa M, Pozios I, Vianello PF, Ameri P, Brunelli C, Ferrucci L et al (2016) Distinguishing ventricular septal bulge versus hypertrophic cardiomyopathy in the elderly. Heart 102:1087–1094Google Scholar
  55. 55.
    Rudolph A, Abdel-Aty H, Bohl S, Boyé P, Zagrosek A, Dietz R, Schulz-Menger J (2009) Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol 53:284–291Google Scholar
  56. 56.
    Biagini E, Spirito P, Rocchi G, Ferlito M, Rosmini S, Lai F, Lorenzini M, Terzi F, Bacchi-Reggiani L, Boriani G, Branzi A, Boni L, Rapezzi C (2009) Prognostic implications of the Doppler restrictive filling pattern in hypertrophic cardiomyopathy. Am J Cardiol 104:1727–1731Google Scholar
  57. 57.
    Lu DY, Haileselassie B, Ventoulis I et al (2018) E/e0 ratio and outcome prediction in hypertrophic cardiomyopathy: the influence of outflow tract obstruction. European Heart Journal - Cardiovascular Imaging 19:101–1076Google Scholar
  58. 58.
    Guttmann OP, Pavlou M, Ambler G et al (2015) Prediction of thromboembolic risk in patients with hypertrophic cardiomyopathy (HCM risk-CVA). Eur J Heart Fail 17:837–845Google Scholar
  59. 59.
    O’Mahony C, Jichi F, Pavlou M et al (2014) A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J 35:2010–2020Google Scholar
  60. 60.
    Lang RM, Berdano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 39:e14Google Scholar
  61. 61.
    Weinsaft JW, Kim HW, Crowley AL, Klem I, Shenoy C, Van Assche L, Brosnan R, Shah DJ, Velazquez EJ, Parker M, Judd RM, Kim RJ (2011) LV thrombus detection by routine echocardiography: insights into performance characteristics using delayed enhancement CMR. JACC Cardiovasc Imaging 4:702–712Google Scholar
  62. 62.
    Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM, Nassenstein K, Schlosser T, Sabin GV, Sechtem U, Mahrholdt H (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887Google Scholar
  63. 63.
    Green JJ, Berger JS, Kramer CM, Salerno M (2012) Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 5:370–377Google Scholar
  64. 64.
    Cannon RO, Rosing DR, Maron BJ et al (1985) Myocardial ischemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation 71:234–243Google Scholar
  65. 65.
    Olivotto I, Cecchi F, Camici PG (2004) Coronary microvascular dysfunction and ischemia in hypertrophic cardiomyopathy. Mechanisms and clinical consequences. Ital Heart J 5:572–580Google Scholar
  66. 66.
    Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C (2005) Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet 42:pe59Google Scholar
  67. 67.
    Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, Lesser JR, Gruner C, Crean AM, Rakowski H, Udelson JE, Rowin E, Lombardi M, Cecchi F, Tomberli B, Spirito P, Formisano F, Biagini E, Rapezzi C, de Cecco CN, Autore C, Cook EF, Hong SN, Gibson CM, Manning WJ, Appelbaum E, Maron MS (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130:484–495Google Scholar
  68. 68.
    Mentias A, Raeisi-Giglou P, Smedira NG, Feng K, Sato K, Wazni O, Kanj M, Flamm SD, Thamilarasan M, Popovic ZB, Lever HM, Desai MY (2018) Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol 72:857–870Google Scholar
  69. 69.
    Kang KW, Janardhan AH, Jung KT, Lee HS, Lee MH, Hwang HJ (2014) Fragmented QRS as a candidate marker for high-risk assessment in hypertrophic cardiomyopathy. Heart Rhythm 11:1433–1440Google Scholar
  70. 70.
    Lu X, Wang W, Zhu L, Wang Y, Sun K, Zou Y, Tian T, Hui R, Wang J, Kang L, Song L (2017) Prognostic significance of fragmented QRS in patients with hypertrophic cardiomyopathy. Cardiology. 138:26–33Google Scholar
  71. 71.
    Limbruno U, Strata G, Zucchi R, Baglini R, Mengozzi G, Balbarini A, Mariani M (1998) Altered autonomic cardiac control in hypertrophic cardiomyopathy. Role of outflow tract obstruction and myocardial hypertrophy. Eur Heart J 19:146–153Google Scholar
  72. 72.
    Butera G, Bonnet D, Kachaner J, Sidi D, Villain E (2003) Heart rate variability in children with hypertrophic cardiomyopathy. Heart 89:205–206Google Scholar
  73. 73.
    Chan RH, Maron BJ, Olivotto I, Assenza GE, Haas TS, Lesser JR, Gruner C, Crean AM, Rakowski H, Rowin E, Udelson J, Lombardi M, Tomberli B, Spirito P, Formisano F, Marra MP, Biagini E, Autore C, Manning WJ, Appelbaum E, Roberts WC, Basso C, Maron MS (2015) Significance of late gadolinium enhancement at right ventricular attachment to ventricular septum in patients with hypertrophic cardiomyopathy. Am J Cardiol 116:436–441Google Scholar
  74. 74.
    Jensen MK, Havndrup O, Christiansen M, Andersen PS, Axelsson A, Køber L, Bundgaard H (2015) Echocardiographic evaluation of pre-diagnostic development in young relatives genetically predisposed to hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 31:1511–1518Google Scholar
  75. 75.
    Connors LH, Sam F, Skinner M et al (2016) Heart failure resulting from age-related cardiac amyloid disease associated with wild-type transthyretin: a prospective, observational cohort study. Circulation 133:282–290Google Scholar
  76. 76.
    Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, Marwick TH, Thomas JD (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 98:1442–1448Google Scholar
  77. 77.
    SyedI S, Glockner JF, Feng D et al (2010) Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 3:155–164Google Scholar
  78. 78.
    Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, Leone O, Farsad M, Ciliberti P, Bacchi-Reggiani L, Fallani F, Branzi A, Rapezzi C (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 46:1076–1084Google Scholar
  79. 79.
    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, Wechalekar AD, Berk JL, Quarta CC, Grogan M, Lachmann HJ, Bokhari S, Castano A, Dorbala S, Johnson GB, Glaudemans AWJM, Rezk T, Fontana M, Palladini G, Milani P, Guidalotti PL, Flatman K, Lane T, Vonberg FW, Whelan CJ, Moon JC, Ruberg FL, Miller EJ, Hutt DF, Hazenberg BP, Rapezzi C, Hawkins PN (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133:2404–2412Google Scholar
  80. 80.
    Stenson RE, Flamm MD Jr, Harrison DC, Hancock EW (1973) Hypertrophic subaortic stenosis. Clinical and hemodynamic effects of long-term propranolol therapy. Am J Cardiol 31:763–773Google Scholar
  81. 81.
    Stauffer JC, Ruiz V, Morard JD (1999) Subaortic obstruction after sildenafil in a patient with hypertrophic cardiomyopathy. N Engl J Med 341:700–701Google Scholar
  82. 82.
    Braunwald E, Brockenbrough EC, Frye RL (1962) Studies on digitalis.V. Comparison of the effects of ouabain on left ventricular dynamics in valvular aortic stenosis and hypertrophic subaortic stenosis. Circulation 26:166–173Google Scholar
  83. 83.
    Bonow RO, Rosing DR, Epstein SE (1983) The acute and chronic effects of verapamil on left ventricular function in patients with hypertrophic cardiomyopathy. Eur Heart J 4(Suppl F):57–65Google Scholar
  84. 84.
    Spirito P, Seidman CE, McKenna WJ, Maron BJ (1997) The management of hypertrophic cardiomyopathy. N Engl J Med 336:775–785Google Scholar
  85. 85.
    Sherrid MV, Barac I, McKenna WJ, Elliott PM, Dickie S, Chojnowska L, Casey S, Maron BJ (2005) Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 45:1251–1258Google Scholar
  86. 86.
    Toshima H, Koga Y, Nagata H, Toyomasu K, Itaya K, Matoba T (1986) Comparable effects of oral diltiazem and verapamil in the treatment of hypertrophic cardiomyopathy. Double-blind crossover study. Jpn Heart J 27:701–715Google Scholar
  87. 87.
    Morrow AG, Reitz BA, Epstein SE, Henry WL, Conkle DM, Itscoitz SB, Redwood DR (1975) Operative treatment in hypertrophic subaortic stenosis. Techniques, and the results of pre and postoperative assessments in 83 patients. Circulation 52:88–102Google Scholar
  88. 88.
    Sigwart U (1995) Non-surgical myocardial reduction for hypertrophic obstructive cardiomyopathy. Lancet 346:211–214Google Scholar
  89. 89.
    Fernandes VL, Nielsen C, Nagueh SF, Herrin AE, Slifka C, Franklin J, Spencer WH III (2008) Follow-up of alcohol septal ablation for symptomatic hypertrophic obstructive cardiomyopathy the Baylor and Medical University of South Carolina experience 1996 to 2007. JACC Cardiovasc Interv 1:561–570Google Scholar
  90. 90.
    Faber L, Seggewiss H, Welge D, Fassbender D, Schmidt HK, Gleichmann U, Horstkotte D (2004) Echo-guided percutaneous septal ablation for symptomatic hypertrophic obstructive cardiomyopathy: 7 years of experience. Eur J Echocardiogr 5:347–355Google Scholar
  91. 91.
    Rigopoulos AG, Sakellaropoulos S, Ali M, Mavrogeni S, Manginas A, Pauschinger M, Noutsias M (2018) Transcatheter septal ablation in hypertrophic obstructive cardiomyopathy: a technical guide and review of published results. Heart Fail Rev 23:907–917Google Scholar
  92. 92.
    Dearani JA, Ommen SR, Gersh BJ, Schaff HV, Danielson GK (2007) Surgery insight: septal myectomy for obstructive hypertrophic cardiomyopathy - the Mayo Clinic experience. Nat Clin Pract Cardiovasc Med 4:503–512Google Scholar
  93. 93.
    Sorajja P, Ommen SR, Holmes DR Jr, Dearani JA, Rihal CS, Gersh BJ, Lennon RJ, Nishimura RA (2012) Survival after alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Circulation 126:2374–2380Google Scholar
  94. 94.
    Liebregts M, Vriesendorp PA, Bakhtawar K et al (2015) A systematic review and meta-analysis of long-term outcomes after septal reduction therapy in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol HF 3:896–905Google Scholar
  95. 95.
    Vriesendorp PA, Liebregts M, Steggerda RC et al (2014) Long-term outcomes after medical and invasive treatment in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol HF 2:630–636Google Scholar
  96. 96.
    ten Cate FJ, Soliman OI, Michels M, Theuns DA, de Jong PL, Geleijnse ML et al (2010) Long-term outcome of alcohol septal ablation in patients with obstructive hypertrophic cardiomyopathy: a word of caution. Circ Heart Fail 3:362–369Google Scholar
  97. 97.
    Jensen MK, Prinz C, Horstkotte D, van Buuren F, Bitter T, Faber L, Bundgaard H (2013) Alcohol septal ablation in patients with hypertrophic obstructive cardiomyopathy: low incidence of sudden cardiac death and reduced risk profile. Heart. 99:1012–1017Google Scholar
  98. 98.
    Rigopoulos AG, Seggewiss H (2013) Hypertrophic cardiomyopathy. Lancet 381:1456Google Scholar
  99. 99.
    Veselka J, Jensen MK, Liebregts M et al (2016) Long-term clinical outcome after alcohol septal ablation for obstructive hypertrophic cardiomyopathy: results from the Euro-ASA registry. Eur Heart J 37:1517–1523Google Scholar
  100. 100.
    Liebregts M, Faber L et al (2017) Outcomes of alcohol septal ablation in younger patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol Intv 10:1134–1143Google Scholar
  101. 101.
    Cooper RM, Stables RH (2018) Non-surgical septal reduction therapy in hypertrophic cardiomyopathy. Heart 104:73–83Google Scholar
  102. 102.
    Lawrenz T, Borchert B, Leuner C, Bartelsmeier M, Reinhardt J, Strunk-Mueller C, Meyer Zu Vilsendorf D, Schloesser M, Beer G, Lieder F, Stellbrink C, Kuhn H (2011) Endocardial radiofrequency ablation for hypertrophic obstructive cardiomyopathy: acute results and 6 months’ follow-up in 19 patients. J Am Coll Cardiol 57:572–576Google Scholar
  103. 103.
    Kato TS, Takayama H, Yoshizawa S, Marboe C, Schulze PC, Farr M, Naka Y, Mancini D, Maurer MS (2012) Cardiac transplantation in patients with hypertrophic cardiomyopathy. Am J Cardiol 110:568–574Google Scholar
  104. 104.
    Maron MS, Kalsmith BM, Udelson JE, Li W, DeNofrio D (2010) Survival after cardiac transplantation in patients with hypertrophic cardiomyopathy. Circ Heart Fail 3:574–579Google Scholar
  105. 105.
    Guttmann OP, Rahman MS, O’Mahony C, Anastasakis A, Elliott PM (2014) Atrial fibrillation and thromboembolism in patients with hypertrophic cardiomyopathy: systematic review. Heart 100:465–472Google Scholar
  106. 106.
    Maron BJ, Olivotto I, Spirito P, Casey SA, Bellone P, Gohman TE, Graham KJ, Burton DA, Cecchi F (2000) Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation. 102(8):858–864Google Scholar
  107. 107.
    Di Donna P, Olivotto I, Delcre SD, Caponi D, Scaglione M, Nault I et al (2010) Efficacy of catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: impact of age, atrial remodelling, and disease progression. Europace 12:347–355Google Scholar
  108. 108.
    Patten M, Pecha S, Aydin A (2018) Atrial fibrillation in hypertrophic cardiomyopathy: diagnosis and considerations for management. J Atr Fibrillation 10:1556Google Scholar
  109. 109.
    Providencia R, Elliott P, Patel K, McCready J, Babu G, Srinivasan N, Bronis K, Papageorgiou N, Chow A, Rowland E, Lowe M, Segal OR, Lambiase PD (2016) Catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: a systematic review and meta-analysis. Heart 102:1533–1543Google Scholar
  110. 110.
    Zhao DS, Shen Y, Zhang Q, Lin G, Lu YH, Chen BT, Shi LS, Huang JF, Lu HH (2016) Outcomes of catheter ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy: a systematic review and meta-analysis. Europace. 18(4):508–520Google Scholar
  111. 111.
    Schinkel AF (2014) Pregnancy in women with hypertrophic cardiomyopathy. Cardiol Rev 22:217–222Google Scholar
  112. 112.
    Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M et al (2018) 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. The Task Force for the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC) endorsed by: the International Society of Gender Medicine (IGM), the German Institute of Gender in Medicine (DGesGM), the European Society of Anaesthesiology (ESA), and the European Society of Gynecology (ESG). European Heart Journal 39:3165–3241Google Scholar
  113. 113.
    Luscher TF (2015) Device therapy in cardiac disease: a success story. Eur Heart J 36:2473–2475Google Scholar
  114. 114.
    Maron BJ, Udelson JE, Bonow RO, Nishimura RA, Ackerman MJ, Estes NA 3rd, Cooper LT Jr, Link MS, Maron MS (2015) Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation 132:e273–e280Google Scholar
  115. 115.
    Alpert C, Day SM, Saberi S (2015) Sports and exercise in athletes with hypertrophic cardiomyopathy. Clin Sports Med 34:489–505Google Scholar
  116. 116.
    Pelliccia A, Lemme E, Maestrini V, Di Paolo FM, Pisicchio C, Di Gioia G, Caselli S (2018) Does sport participation worsen the clinical course of hypertrophic cardiomyopathy? Clinical outcome of hypertrophic cardiomyopathy in athletes. Circulation 137:531–533Google Scholar
  117. 117.
    Pelliccia A, Solberg EE, Papadakis M, Adami PE, Biffi A, Caselli S, la Gerche A, Niebauer J, Pressler A, Schmied CM, Serratosa L, Halle M, van Buuren F, Borjesson M, Carrè F, Panhuyzen-Goedkoop NM, Heidbuchel H, Olivotto I, Corrado D, Sinagra G, Sharma S (2019) Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur Heart J 40:19–33Google Scholar
  118. 118.
    Axelsson A, Iversen K, Vejlstrup N, Ho C, Norsk J, Langhoff L et al (2015) Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: the INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol:123–131Google Scholar
  119. 119.
    Ho CY, McMurray JJV, Cirino AL, Colan SD, Day SM, Desai AS et al (2017) VANISH trial investigators and executive committee. The design of the Valsartan for Attenuating Disease Evolution in Early Sarcomeric Hypertrophic Cardiomyopathy (VANISH) trial. Am Heart J 187:145–155Google Scholar
  120. 120.
    Ho CY, Lakdawala NK, Cirino AL, Lipshultz SE, Sparks E, Abbasi SA, Kwong RY, Antman EM, Semsarian C, González A, López B, Diez J, Orav EJ, Colan SD, Seidman CE (2015) Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail 3:180–188Google Scholar
  121. 121.
    Olivotto I, Camici PG, Merlini PA, Rapezzi C, Patten M, Climent V et al (2018) Efficacy of ranolazine in patients with symptomatic hypertrophic cardiomyopathy: the RESTYLE-HCM randomized, double-blind placebo-controlled study. Circ Heart Fail 11:e004124Google Scholar
  122. 122.
    https://clinicaltrials.gov: ClinicalTrials.gov Identifier: NCT02291237. Effect of eleclazine (GS-6615) on exercise capacity in subjects with symptomatic hypertrophic cardiomyopathy
  123. 123.
    https://clinicaltrials.gov:. Clinical study to evaluate mavacamten (MYK-461) in adults with symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM). ClinicalTrials.gov Identifier NCT03470545
  124. 124.
    https://clinicaltrials.gov:. Evaluating the effect of spironolactone on hypertrophic cardiomyopathy. ClinicalTrials.gov Identifier: NCT0294899
  125. 125.
    Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A, Ashrafian H, Watkins H, Frenneaux M (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122:1562–1569Google Scholar
  126. 126.
    https://clinicaltrials.gov: Efficacy, safety, and tolerability of perhexiline in subjects with hypertrophic cardiomyopathy and heart failure (ClinicalTrials.gov Identifier: NCT02431221)
  127. 127.
    Prondzynski M, Krämer E, Laufer SD, Shibamiya A, Pless O, Flenner F, Müller OJ, Münch J, Redwood C, Hansen A, Patten M, Eschenhagen T, Mearini G, Carrier L (2017) Evaluation of MYBPC3 trans splicing and gene replacement as therapeutic options in human iPSC-derived cardiomyocytes. Mol Ther Nucleic Acids 7:475–486Google Scholar
  128. 128.
    Mosqueira D, Mannhardt I, Bhagwan JR, Lis-Slimak K, Katili P, Scott E, Hassan M, Prondzynski M, Harmer SC, Tinker A, Smith JGW, Carrier L, Williams PM, Gaffney D, Eschenhagen T, Hansen A, Denning C (2018) CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur Heart J 39(43):3879–3892Google Scholar
  129. 129.
    Liu Q, Li D, Berger AE, Johns RA, Gao L (2017) Survival and prognostic factors in hypertrophic cardiomyopathy: a meta-analysis. Sci Rep 7:11957Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • George Makavos
    • 1
  • Chris Κairis
    • 1
  • Maria-Eirini Tselegkidi
    • 2
  • Theodoros Karamitsos
    • 3
  • Angelos G. Rigopoulos
    • 4
  • Michel Noutsias
    • 4
  • Ignatios Ikonomidis
    • 1
    Email author
  1. 1.2nd Cardiology Department, National and Kapodistrian University of AthensAttikon HospitalHaidariGreece
  2. 2.Department of Clinical Therapeutics, National and Kapodistrian University of Athens“Alexandra” HospitalAthensGreece
  3. 3.1st Department of Cardiology, Aristotle University of ThessalonikiAHEPA HospitalThessalonikiGreece
  4. 4.Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital HalleMartin-Luther-University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations