Advertisement

Heart Failure Reviews

, Volume 24, Issue 4, pp 473–480 | Cite as

Personalized physiology-guided resuscitation in highly monitored patients with cardiac arrest—the PERSEUS resuscitation protocol

  • Athanasios ChalkiasEmail author
  • Eleni Arnaoutoglou
  • Theodoros Xanthos
Article
  • 182 Downloads

Abstract

Resuscitation guidelines remain uniform across all cardiac arrest patients, focusing on the delivery of chest compressions to a standardized rate and depth and algorithmic vasopressor dosing. However, individualizing resuscitation to the appropriate hemodynamic and ventilatory goals rather than a standard “one-size-fits-all” treatment seems a promising new therapeutic strategy. In this article, we present a new physiology-guided treatment strategy to titrate the resuscitation efforts to patient’s physiologic response after cardiac arrest. This approach can be applied during resuscitation attempts in highly monitored patients, such as those in the operating room or the intensive care unit, and could serve as a method for improving tissue perfusion and oxygenation while decreasing post-resuscitation adverse effects.

Keywords

Resuscitation Physiology-guided treatment Pathophysiology Cardiac arrest Monitoring 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, Pellis T, Sandroni C, Skrifvars MB, Smith GB, Sunde K, Deakin CD, Adult advanced life support section Collaborators (2015) European Resuscitation Council Guidelines for Resuscitation 2015: Section 3. Adult advanced life support. Resuscitation 95:100–147CrossRefGoogle Scholar
  2. 2.
    Meaney PA, Bobrow BJ, Mancini ME, Christenson J, de Caen AR, Bhanji F, Abella BS, Kleinman ME, Edelson DP, Berg RA, Aufderheide TP, Menon V, Leary M, CPR Quality Summit Investigators, the American Heart Association Emergency Cardiovascular Care Committee, and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation (2013) Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation 128:417–435CrossRefGoogle Scholar
  3. 3.
    Sutton RM, Friess SH, Maltese MR, Naim MY, Bratinov G, Weiland TR, Garuccio M, Bhalala U, Nadkarni VM, Becker LB, Berg RA (2014) Hemodynamic-directed cardiopulmonary resuscitation during in-hospital cardiac arrest. Resuscitation 85:983–986CrossRefGoogle Scholar
  4. 4.
    Chopra AS, Wong N, Ziegler CP, Morrison LJ (2016) Systematic review and meta-analysis of hemodynamic-directed feedback during cardiopulmonary resuscitation in cardiac arrest. Resuscitation 101:102–107CrossRefGoogle Scholar
  5. 5.
    Morgan RW, French B, Kilbaugh TJ, Naim MY, Wolfe H, Bratinov G, Shoap W, Hsieh TC, Nadkarni VM, Berg RA, Sutton RM (2016) A quantitative comparison of physiologic indicators of cardiopulmonary resuscitation quality: diastolic blood pressure versus end-tidal carbon dioxide. Resuscitation 104:6–11CrossRefGoogle Scholar
  6. 6.
    Chalkias A, Xanthos T (2015) Timing positive-pressure ventilation during chest compression: the key to improving the thoracic pump? Eur Heart J Acute Cardiovasc Care 4:24–27CrossRefGoogle Scholar
  7. 7.
    Chalkias A, Spyropoulos V, Koutsovasilis A, Papalois A, Kouskouni E, Xanthos T (2015) Cardiopulmonary arrest and resuscitation in severe sepsis and septic shock: a research model. Shock 43:285–291CrossRefGoogle Scholar
  8. 8.
    Marquez AM, Morgan RW, Ross CE, Berg RA, Sutton RM (2018) Physiology-directed cardiopulmonary resuscitation: advances in precision monitoring during cardiac arrest. Curr Opin Crit Care 24:143–150CrossRefGoogle Scholar
  9. 9.
    Chalkias A, Xanthos T (2012) Pathophysiology and pathogenesis of post-resuscitation myocardial stunning. Heart Fail Rev 17:117–128CrossRefGoogle Scholar
  10. 10.
    Chalkias A, Xanthos T (2012) Post-cardiac arrest brain injury: pathophysiology and treatment. J Neurol Sci 315:1–8CrossRefGoogle Scholar
  11. 11.
    Metzger AK, Herman M, McKnite S, Tang W, Yannopoulos D (2012) Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure. Crit Care Med 40:1851–1856CrossRefGoogle Scholar
  12. 12.
    Debaty G, Shin SD, Metzger A, Kim T, Ryu HH, Rees J, McKnite S, Matsuura T, Lick M, Yannopoulos D, Lurie K (2015) Tilting for perfusion: head-up position during cardiopulmonary resuscitation improves brain flow in a porcine model of cardiac arrest. Resuscitation 87:38–43CrossRefGoogle Scholar
  13. 13.
    Lurie KG, Nemergut EC, Yannopoulos D, Sweeney M (2016) The physiology of cardiopulmonary resuscitation. Anesth Analg 122:767–783CrossRefGoogle Scholar
  14. 14.
    Chalkias A, Pavlopoulos F, Koutsovasilis A, d'Aloja E, Xanthos T (2017) Airway pressure and outcome of out-of-hospital cardiac arrest: a prospective observational study. Resuscitation 110:101–106CrossRefGoogle Scholar
  15. 15.
    Guyton AC, Hall JE (2000) Cardiac output, venous return, and their regulation. In: Schmitt W, Gruliow RWB (eds) Textbook of medical physiology, 10th edn. Saunders Company, Philadelphia, pp 210–222Google Scholar
  16. 16.
    Marshall JM (1982) The influence of the sympathetic nervous system on individual vessels of the microcirculation of skeletal muscle of the rat. J Physiol 332:169–186CrossRefGoogle Scholar
  17. 17.
    Krupičková P, Mlček M, Huptych M, Mormanová Z, Bouček T, Belza T, Lacko S, Černý M, Neužil P, Kittnar O, Linhart A, Bělohlávek J (2016) Microcirculatory blood flow during cardiac arrest and cardiopulmonary resuscitation does not correlate with global hemodynamics: an experimental study. J Transl Med 14:163CrossRefGoogle Scholar
  18. 18.
    Krupičková P, Mormanová Z, Bouček T, Belza T, Šmalcová J, Bělohlávek J (2018) Microvascular perfusion in cardiac arrest: a review of microcirculatory imaging studies. Perfusion 33:8–15CrossRefGoogle Scholar
  19. 19.
    Stefaniotou A, Varvarousi G, Varvarousis DP, Xanthos T (2014) The effects of nitroglycerin during cardiopulmonary resuscitation. Eur J Pharmacol 734:42–49CrossRefGoogle Scholar
  20. 20.
    Nishida T, Yu JD, Minamishima S, Sips PY, Searles RJ, Buys ES, Janssens S, Brouckaert P, Bloch KD, Ichinose F (2009) Protective effects of nitric oxide synthase 3and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice. Crit Care Med 37:256–262CrossRefGoogle Scholar
  21. 21.
    Radomski MW, Palmer RM, Moncada S (1991) Modulation of platelet aggregation by an L-arginine-nitric oxide pathway. Trends Pharmacol Sci 12:87–88CrossRefGoogle Scholar
  22. 22.
    Mohanakumar KP, Thomas B, Sharma SM, Muralikrishnan D, Chowdhury R, Chiueh CC (2002) Nitric oxide: an antioxidant and neuroprotector. Ann N Y Acad Sci 962:389–401CrossRefGoogle Scholar
  23. 23.
    Nicolescu AC, Zavorin SI, Turro NJ, Reynolds JN, Thatcher GR (2002) Inhibition of lipid peroxidation in synaptosomes and liposomes by nitrates and nitrites. Chem Res Toxicol 15:985–998CrossRefGoogle Scholar
  24. 24.
    Debaty G, Metzger A, Rees J, McKnite S, Puertas L, Yannopoulos D, Lurie K (2015) Enhanced perfusion during advanced life support improves survival with favorable neurologic function in a porcine model of refractory cardiac arrest. Crit Care Med 43:1087–1095CrossRefGoogle Scholar
  25. 25.
    Yannopoulos D, Bartos JA, George SA, Sideris G, Voicu S, Oestreich B, Matsuura T, Shekar K, Rees J, Aufderheide TP (2017) Sodium nitroprusside enhanced cardiopulmonary resuscitation improves short term survival in a porcine model of ischemic refractory ventricular fibrillation. Resuscitation 110:6–11CrossRefGoogle Scholar
  26. 26.
    Morgan RW, Sutton RM, Karlsson M, Lautz AJ, Mavroudis CD, Landis WP, Lin Y, Jeong S, Craig N, Nadkarni VM, Kilbaugh TJ, Berg RA (2018) Pulmonary vasodilator therapy in shock-associated cardiac arrest. Am J Respir Crit Care Med 197:905–912CrossRefGoogle Scholar
  27. 27.
    Kang K, Kim T, Ro YS, Kim YJ, Song KJ, Shin SD (2016) Prehospital endotracheal intubation and survival after out-of-hospital cardiac arrest: results from the Korean nationwide registry. Am J Emerg Med 34:128–132CrossRefGoogle Scholar
  28. 28.
    Wang CH, Chen WJ, Chang WT, Tsai MS, Yu PH, Wu YW, Huang CH (2016) The association between timing of tracheal intubation and outcomes of adult in-hospital cardiac arrest: a retrospective cohort study. Resuscitation 105:59–65CrossRefGoogle Scholar
  29. 29.
    Benoit JL, Gerecht RB, Steuerwald MT, McMullan JT (2015) Endotracheal intubation versus supraglottic airway placement in out-of-hospital cardiac arrest: a meta-analysis. Resuscitation 93:20–26CrossRefGoogle Scholar
  30. 30.
    Cordioli RL, Lyazidi A, Rey N, Granier JM, Savary D, Brochard L, Richard JC (2016) Impact of ventilation strategies during chest compression: an experimental study with clinical observations. J Appl Physiol (1985) 120:196–203CrossRefGoogle Scholar
  31. 31.
    Grieco DL, Brochard L, Drouet A, Telias I, Delisle S, Bronchti G, Ricard C, Rigollot M, Badat B, Ouellet P, Charbonney E, Mancebo J, Mercat A, Savary D, Richard JM, CAVIAR Group (2018) Intrathoracic airway closure impacts CO2 signal and delivered ventilation during cardiopulmonary resuscitation. Am J Respir Crit Care Med.  https://doi.org/10.1164/rccm.201806-1111OC [Epub ahead of print]
  32. 32.
    Gazmuri RJ, Ayoub IM, Radhakrishnan J, Motl J, Upadhyaya MP (2012) Clinically plausible hyperventilation does not exert adverse hemodynamic effects during CPR but markedly reduces end-tidal PCO2. Resuscitation 83:259–264CrossRefGoogle Scholar
  33. 33.
    Pantazopoulos C, Xanthos T, Pantazopoulos I, Papalois A, Kouskouni E, Iacovidou N (2015) A review of carbon dioxide monitoring during adult cardiopulmonary resuscitation. Heart Lung Circ 24:1053–1061CrossRefGoogle Scholar
  34. 34.
    Steen S, Liao Q, Pierre L, Paskevicius A, Sjöberg T (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258CrossRefGoogle Scholar
  35. 35.
    Varvarousis D, Xanthos T, Ferino G, Noto A, Iacovidou N, Mura M, Scano P, Chalkias A, Papalois A, De-Giorgio F, Baldi A, Mura P, Staikou C, Stocchero M, Finco G, d'Aloja E, Locci E (2017) Metabolomics profiling reveals different patterns in an animal model of asphyxial and dysrhythmic cardiac arrest. Sci Rep 7:16575CrossRefGoogle Scholar
  36. 36.
    Sandroni C, De Santis P, D’Arrigo S (2018) Capnography during cardiac arrest. Resuscitation 132:73–77CrossRefGoogle Scholar
  37. 37.
    Bouček T, Mlček M, Krupičková P, Huptych M, Belza T, Kittnar O, Linhart A, Bělohlávek J (2018) Brain perfusion evaluated by regional tissue oxygenation as a possible quality indicator of ongoing cardiopulmonary resuscitation. An experimental porcine cardiac arrest study. Perfusion 33:65–70CrossRefGoogle Scholar
  38. 38.
    Putzer G, Braun P, Strapazzon G, Toferer M, Mulino M, Glodny B, Falk M, Brugger H, Paal P, Helbok R, Mair P (2016) Monitoring of brain oxygenation during hypothermic CPR - a prospective porcine study. Resuscitation 104:1–5CrossRefGoogle Scholar
  39. 39.
    Schnaubelt S, Sulzgruber P, Menger J, Skhirtladze-Dworschak K, Sterz F, Dworschak M (2018) Regional cerebral oxygen saturation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation and favourable neurological outcome - a review of the current literature. Resuscitation 125:39–47CrossRefGoogle Scholar
  40. 40.
    Ibrahim AW, Trammell AR, Austin H, Barbour K, Onuorah E, House D, Miller HL, Tutt C, Combs D, Phillips R, Dickert NW, Zafari AM (2015) Cerebral oximetry as a real-time monitoring tool to assess quality of in-hospital cardiopulmonary resuscitation and post cardiac arrest care. J Am Heart Assoc 4:e001859CrossRefGoogle Scholar
  41. 41.
    Genbrugge C, Dens J, Meex I, Boer W, Eertmans W, Sabbe M, Jans F, De Deyne C (2016) Regional cerebral oximetry during cardiopulmonary resuscitation: useful or useless? J Emerg Med 50:198–207CrossRefGoogle Scholar
  42. 42.
    Parnia S, Yang J, Nguyen R, Ahn A, Zhu J, Inigo-Santiago L, Nasir A, Golder K, Ravishankar S, Bartlett P, Xu J, Pogson D, Cooke S, Walker C, Spearpoint K, Kitson D, Melody T, Chilwan M, Schoenfeld E, Richman P, Mills B, Wichtendahl N, Nolan J, Singer A, Brett S, Perkins GD, Deakin CD (2016) Cerebral oximetry during cardiac arrest: a multicenter study of neurologic outcomes and survival. Crit Care Med 44:1663–1674CrossRefGoogle Scholar
  43. 43.
    Cournoyer A, Iseppon M, Chauny JM, Denault A, Cossette S, Notebaert É (2016) Near-infrared spectroscopy monitoring during cardiac arrest: a systematic review and meta-analysis. Acad Emerg Med 23:851–862CrossRefGoogle Scholar
  44. 44.
    Yeoh TY, Venkatraghavan L, Fisher JA, Meineri M (2017) Internal jugular vein blood flow in the upright position during external compression and increased central venous pressure: an ultrasound study in healthy volunteers. Can J Anaesth 64:854–859CrossRefGoogle Scholar
  45. 45.
    Friess SH, Sutton RM, French B, Bhalala U, Maltese MR, Naim MY, Bratinov G, Arciniegas Rodriguez S, Weiland TR, Garuccio M, Nadkarni VM, Becker LB, Berg RA (2014) Hemodynamic directed CPR improves cerebral perfusion pressure and brain tissue oxygenation. Resuscitation 85:1298–1303CrossRefGoogle Scholar
  46. 46.
    Moore JC, Bartos JA, Matsuura TR, Yannopoulos D (2017) The future is now: neuroprotection during cardiopulmonary resuscitation. Curr Opin Crit Care 23:215–222CrossRefGoogle Scholar
  47. 47.
    Ryu HH, Moore JC, Yannopoulos D, Lick M, McKnite S, Shin SD, Kim TY, Metzger A, Rees J, Tsangaris A, Debaty G, Lurie KG (2016) The effect of head up cardiopulmonary resuscitation on cerebral and systemic hemodynamics. Resuscitation 102:29–34CrossRefGoogle Scholar
  48. 48.
    Moore JC, Holley J, Segal N, Lick MC, Labarère J, Frascone RJ, Dodd KW, Robinson AE, Lick C, Klein L, Ashton A, McArthur A, Tsangaris A, Makaretz A, Makaretz M, Debaty G, Pepe PE, Lurie KG (2018) Consistent head up cardiopulmonary resuscitation haemodynamics are observed across porcine and human cadaver translational models. Resuscitation 132:133–139CrossRefGoogle Scholar
  49. 49.
    Hamrick JL, Hamrick JT, Lee JK, Lee BH, Koehler RC, Shaffner DH (2014) Efficacy of chest compressions directed by end-tidal CO2 feedback in a pediatric resuscitation model of basic life support. J Am Heart Assoc 3:e000450CrossRefGoogle Scholar
  50. 50.
    Hamrick JT, Hamrick JL, Bhalala U, Armstrong JS, Lee JH, Kulikowicz E, Lee JK, Kudchadkar SR, Koehler RC, Hunt EA, Shaffner DH (2017) End-tidal CO2-guided chest compression delivery improves survival in a neonatal asphyxial cardiac arrest model. Pediatr Crit Care Med 18:e575–e584CrossRefGoogle Scholar
  51. 51.
    Sutton RM, Friess SH, Bhalala U, Maltese MR, Naim MY, Bratinov G, Niles D, Nadkarni VM, Becker LB, Berg RA (2013) Hemodynamic directed CPR improves short-term survival from asphyxia-associated cardiac arrest. Resuscitation 84:696–701CrossRefGoogle Scholar
  52. 52.
    Sutton RM, French B, Meaney PA, Topjian AA, Parshuram CS, Edelson DP, Schexnayder S, Abella BS, Merchant RM, Bembea M, Berg RA, Nadkarni VM, American Heart Association's Get With The Guidelines–Resuscitation Investigators (2016) Physiologic monitoring of CPR quality during adult cardiac arrest: a propensity-matched cohort study. Resuscitation 106:76–82CrossRefGoogle Scholar
  53. 53.
    Moitra VK, Einav S, Thies KC, Nunnally ME, Gabrielli A, Maccioli GA, Weinberg G, Bannerjee A, Ruetzler K, Dobson G, McEvoy M, O’Connor MF (2018) Cardiac arrest in the operating room: resuscitation and management for the anesthesiologist part 1. Anesth Analg 127:e49–e50CrossRefGoogle Scholar
  54. 54.
    Fessler HE, Brower RG, Wise RA, Permutt S (1991) Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis 143:19–24CrossRefGoogle Scholar
  55. 55.
    Jellinek H, Krenn H, Oczenski W, Veit F, Schwarz S, Fitzgerald RD (2000) Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol 88:926–932CrossRefGoogle Scholar
  56. 56.
    Aya HD, Cecconi M (2015) Can (and should) the venous tone be monitored at the bedside? Curr Opin Crit Care 21:240–244CrossRefGoogle Scholar
  57. 57.
    Maas JJ (2015) Mean systemic filling pressure: its measurement and meaning. Netherlands J Crit Care 19:6–11Google Scholar
  58. 58.
    Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, Monnet X (2012) Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med 40:3146–3153CrossRefGoogle Scholar
  59. 59.
    Datta P, Magder S (1999) Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Respir Crit Care Med 160:1987–1993CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of AnesthesiologyUniversity of ThessalyLarisaGreece
  2. 2.Hellenic Society of Cardiopulmonary ResuscitationAthensGreece
  3. 3.Department of AnesthesiologyUniversity Hospital of LarisaLarisaGreece
  4. 4.School of MedicineEuropean University CyprusNicosiaCyprus

Personalised recommendations