Advertisement

Autonomic regulation device therapy in heart failure with reduced ejection fraction: a systematic review and meta-analysis of randomized controlled trials

  • Ahmed Bendary
  • Mohamed Bendary
  • Mohamed Salem
Article

Abstract

Heart failure with reduced ejection fraction (HFrEF) represents a significant public health burden associated with incremental health care costs. Given the limitations associated with pharmacological autonomic regulation therapy (ART), device-based autonomic neuromodulation is on the horizon now for ART in those patients. This systematic review aimed primarily to determine the effect of ART by devices on functional status and quality of life (QOL) in patients with HFrEF. We performed a meta-analysis of five randomized controlled trials (1074 patients) comparing ART by devices versus optimal medical therapy (OMT) in HFrEF. We assessed pooled estimates of odds ratio (OR) for improvement in New York Heart Association (NYHA) class and mean differences (MD) in 6-minute hall walk distance (6-MHWD), Minnesota Living with Heart Failure Questionnaire (MLHFQ) score, N-terminal pro b-type natriuretic peptide (NT-proBNP) levels, and left ventricular end-systolic volume index (LVESVi) with their 95% confidence intervals (CIs) at 6-month follow-up. Compared to OMT alone, ART by devices in HFrEF significantly improves NYHA class (OR 2.26, 95% CI 1.33 to 3.83, P = 0.003), increases 6-MHWD (MD 45.53 m, 95% CI 30.61 to 60.45, P < 0.00001), improves MLHFQ score (MD − 10.59, 95% CI − 20.62 to − 0.57, P = 0.04) with neutral effect on NT-proBNP levels (MD − 236.5 pg/ml, 95% CI − 523.86 to 50.87, P = 0.11) and LVESVi (MD − 1.01 ml/m2, 95% CI − 4.49 to 2.47, P = 0.57). We concluded that device-based neuromodulation therapy significantly improves functional status and quality of life in patients with HFrEF.

Keywords

Autonomic regulation Devices Heart failure 

Abbreviations

6-MHWD

6-minute hall walk distance

ART

Autonomic regulation therapy

CI

Confidence interval

HFrEF

Heart failure with reduced ejection fraction

LVESVi

Left ventricular end-systolic volume index

MD

Mean difference

MLHFQ

Minnesota Living with Heart Failure Questionnaire

NT-proBNP

N-terminal pro b-type natriuretic peptide

NYHA

New York Heart Association

QOL

Quality of life

Notes

Acknowledgments

We acknowledge the investigators of the DEFEAT-HF study for providing a corrected figure of NT-proBNP data after they were notified about the erroneous plot in their original published work. A correction has been published by the investigators to reflect this change [33].

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ambrosy A, Gheorghiade M, Chioncel O, Mentz R, Butler J (2014) Global perspectives in hospitalized heart failure: regional and ethnic variation in patient characteristics, management, and outcomes. Curr Heart Fail Rep 11:416–427.  https://doi.org/10.1007/s11897-014-0221-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Roger V, Weston S, Redfield M, Hellermann-Homan J, Killian J, Yawn B, Jacobsen SJ (2004) Trends in heart failure incidence and survival in a community-based population. JAMA 292:344–350.  https://doi.org/10.1001/jama.292.3.344 CrossRefPubMedGoogle Scholar
  3. 3.
    Pepper G, Lee R (1999) Sympathetic activation in heart failure and its treatment with beta-blockade. Arch Intern Med 159:225–234.  https://doi.org/10.1001/archinte.159.3.225 CrossRefPubMedGoogle Scholar
  4. 4.
    Hogg K, McMurray J (2005) Neurohumoral pathways in heart failure with preserved systolic function. Prog Cardiovasc Dis 47:357–366.  https://doi.org/10.1016/j.pcad.2005.02.001 CrossRefGoogle Scholar
  5. 5.
    Regitz V, Leuchs B, Bossaller C, Sehested J, Rappolder M, Fleck E (1991) Myocardial catecholamine concentrations in dilated cardiomyopathy and heart failure of different origins. Eur Heart J 12(Suppl D):171–174.  https://doi.org/10.1093/eurheartj/12.suppl_D.171 CrossRefPubMedGoogle Scholar
  6. 6.
    Olshansky B, Sabbah H, Hauptman P, Colucci W (2008) Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 118:863–871.  https://doi.org/10.1161/CIRCULATIONAHA.107.760405 CrossRefPubMedGoogle Scholar
  7. 7.
    Dunlap M, Bibevski S, Rosenberry T, Ernsberger P (2003) Mechanisms of altered vagal control in heart failure: influence of muscarinic receptors and acetylcholinesterase activity. Am J Physiol Heart Circ Physiol 285:H1632–H1640.  https://doi.org/10.1152/ajpheart.01051.2002 CrossRefPubMedGoogle Scholar
  8. 8.
    Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J (2009) The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54:1747–1762.  https://doi.org/10.1016/j.jacc.2009.05.015 CrossRefPubMedGoogle Scholar
  9. 9.
    Bristow M (2003) Antiadrenergic therapy of chronic heart failure: surprises and new opportunities. Circulation 107:1100–1102.  https://doi.org/10.1161/01.CIR.0000054530.87613.36 CrossRefPubMedGoogle Scholar
  10. 10.
    Chatterjee N, Singh J (2015) Novel interventional therapies to modulate the autonomic tone in heart failure. J Am Coll Cardiol HF 3:786–802.  https://doi.org/10.1016/j.jchf.2015.05.008 CrossRefGoogle Scholar
  11. 11.
    Joe V, Adrian F, Cheryl L, Lisa S. The Role of Patient-Centered Outcomes Research in the Current Healthcare Landscape: Setting the Stage Available at: https://www.medscape.org/viewarticle/851807 (Accessed February 2018)
  12. 12.
    Moher D, Liberati A, Tetzlaff J, Prisma Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097.  https://doi.org/10.1371/journal.pmed.1000097 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bendary A, Bendary M, Salem M. Autonomic regulation device therapy in heart failure with reduced ejection fraction; a systematic review and meta-analysis of randomized controlled trials. PROSPERO 2018 CRD 42018085931. Available at:http://wwwcrdyorkacuk/PROSPERO/display_recordphp?ID=CRD42018085931 (Accessed March 2018)
  14. 14.
    Higgins J, Thompson S, Deeks J, Altman D (2002) Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy 7:51–61.  https://doi.org/10.1258/1355819021927674 CrossRefPubMedGoogle Scholar
  15. 15.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188.  https://doi.org/10.1016/0197-2456(86)90046-2 CrossRefGoogle Scholar
  16. 16.
    Zipes D, Neuzil P, Theres H, Caraway D, Mann D, Mannheimer C, van Buren P, Linde C, Linderoth B, Kueffer F, Sarazin SA, DeJongste M, DEFEAT-HF Trial Investigators (2016) Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure: the DEFEAT-HF study. J Am Coll Cardiol HF 4:129–136.  https://doi.org/10.1016/j.jchf.2015.10.006 CrossRefGoogle Scholar
  17. 17.
    Abraham W, Zile M, Weaver F, Butter C, Ducharme A, Halbach M et al (2015) Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. J Am Coll Cardiol HF 3:487–496.  https://doi.org/10.1016/j.jchf.2015.02.006 CrossRefGoogle Scholar
  18. 18.
    Furukawa T, Barbui C, Cipriani A, Brambilla P, Watanabe N (2006) Imputing missing standard deviations in meta-analyses can provide accurate results. J Clin Epidemiol 59:7–10.  https://doi.org/10.1016/j.jclinepi.2005.06.006 CrossRefPubMedGoogle Scholar
  19. 19.
    Hozo S, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13.  https://doi.org/10.1186/1471-2288-5-13 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135.  https://doi.org/10.1186/1471-2288-14-135 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Higgins J, Thompson S, Deeks J, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ: British Med J 327:557–560.  https://doi.org/10.1136/bmj.327.7414.557 CrossRefGoogle Scholar
  22. 22.
    Zannad F, De Ferrari G, Tuinenburg A, Wright D, Brugada J, Butter C et al (2014) Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J 36:425–433.  https://doi.org/10.1093/eurheartj/ehu345 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gold M, Van Veldhuisen D, Hauptman P, Borggrefe M, Kubo S, Lieberman R et al (2016) Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol 68:149–158.  https://doi.org/10.1016/j.jacc.2016.03.525 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen W, Ling Z, Xu Y, Liu Z, Su L, Du H et al (2017) Preliminary effects of renal denervation with saline irrigated catheter on cardiac systolic function in patients with heart failure: a prospective, randomized, controlled, pilot study. Catheter Cardiovasc Interv 89(4):E153–E161.  https://doi.org/10.1002/ccd.26475 CrossRefPubMedGoogle Scholar
  25. 25.
    Abdulla J, Køber L, Torp-Pedersen C (2004) Methods of assessing the functional status of patients with left ventricular systolic dysfunction in interventional studies: can brain natriuretic peptide measurement be used as surrogate for the traditional methods? Cardiovasc Drugs Ther 18:219–224.  https://doi.org/10.1023/B:CARD.0000033643.93393.46 CrossRefPubMedGoogle Scholar
  26. 26.
    Savarese G, Orsini N, Hage C, Vedin O, Cosentino F, Rosano G et al (2018) Utilizing NT-proBNP for eligibility and enrichment in trials in HFpEF, HFmrEF, and HFrEF. J Am Coll Cardiol HF 6:246–256Google Scholar
  27. 27.
    Piña IL, Udelson JE Seeking a clear signal: what are the best surrogates to use in heart failure trials? Available at: https://www.medscape.com/viewarticle/889682# vp_3 (Accessed February 2018)
  28. 28.
    Verhaert D, Grimm R, Puntawangkoon C, Wolski K, Wilkoff B, Starling R et al (2010) Long-term reverse remodeling with cardiac resynchronization therapy results of extended echocardiographic follow-up. J Am Coll Cardiol 55:1788–1795.  https://doi.org/10.1016/j.jacc.2010.01.022 CrossRefPubMedGoogle Scholar
  29. 29.
    Ioannidis J, Patsopoulos N, Rothstein H (2008) Research methodology: reasons or excuses for avoiding meta-analysis in forest plots. BMJ: Br Med J 336:1413–1415.  https://doi.org/10.1136/bmj.a117 CrossRefGoogle Scholar
  30. 30.
    Renda G, Ricci F, Giugliano R, De Caterina R (2017) Non–vitamin K antagonist oral anticoagulants in patients with atrial fibrillation and valvular heart disease. J Am Coll Cardiol 69:1363–1371.  https://doi.org/10.1016/j.jacc.2016.12.038 CrossRefPubMedGoogle Scholar
  31. 31.
    Hicks T, Stewart F, Eisinga A (2016) NOACs versus warfarin for stroke prevention in patients with AF: a systematic review and meta-analysis. Open Heart 3(1):e000279.  https://doi.org/10.1136/openhrt-2015-000279 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    McMurray J, Packer M, Desai A, Gong J, Lefkowitz M, Rizkala A, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, PARADIGM-HF Investigators and Committees (2014) Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004.  https://doi.org/10.1056/NEJMoa1409077 CrossRefPubMedGoogle Scholar
  33. 33.
    Zipes D, Neuzil P, Theres H, Caraway D, Mann D, Mannheimer C et al (2018) Correction. J Am Coll Cardiol HF 6.  https://doi.org/10.1016/j.jchf.2018.05.001

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cardiology Department, Benha Faculty of MedicineBenha UniversityBenhaEgypt
  2. 2.Department of Biostatistics, National Cancer InstituteCairo UniversityGizaEgypt

Personalised recommendations