Heart Failure Reviews

, Volume 24, Issue 1, pp 143–154 | Cite as

Metabolic remodeling of substrate utilization during heart failure progression

  • Liang Chen
  • Jiangping SongEmail author
  • Shengshou Hu


Heart failure (HF) is a clinical syndrome caused by a decline in cardiac systolic or diastolic function, which leaves the heart unable to pump enough blood to meet the normal physiological requirements of the human body. It is a serious disease burden worldwide affecting nearly 23 million patients. The concept that heart failure is “an engine out of fuel” has been generally accepted and metabolic remodeling has been recognized as an important aspect of this condition; it is characterized by defects in energy production and changes in metabolic pathways involved in the regulation of essential cellular functions such as the process of substrate utilization, the tricarboxylic acid cycle, oxidative phosphorylation, and high-energy phosphate metabolism. Advances in second-generation sequencing, proteomics, and metabolomics have made it possible to perform comprehensive tests on genes and metabolites that are crucial in the process of HF, thereby providing a clearer and comprehensive understanding of metabolic remodeling during HF. In recent years, new metabolic changes such as ketone bodies and branched-chain amino acids were demonstrated as alternative substrates in end-stage HF. This systematic review focuses on changes in metabolic substrate utilization during the progression of HF and the underlying regulatory mechanisms. Accordingly, the conventional concepts of metabolic remodeling characteristics are reviewed, and the latest developments, particularly multi-omics studies, are compiled.


Heart failure Metabolic remodeling Substrate utilization Metabolomics 



This study was funded by CAMS Innovation Fund for Medical Sciences (2016-I2M-1-015) and the National Natural Science Foundation of China (81670376).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Shen L et al (2017) Declining risk of sudden death in heart failure. N Engl J Med 377(1):41–51PubMedGoogle Scholar
  2. 2.
    Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14(10):591–602PubMedGoogle Scholar
  3. 3.
    Velazquez EJ et al (2016) Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 374(16):1511–1520PubMedPubMedCentralGoogle Scholar
  4. 4.
    Filion KB et al (2016) A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med 374(12):1145–1154PubMedGoogle Scholar
  5. 5.
    Felker GM et al (2017) Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 318(8):713–720PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ho KK et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22(4 Suppl A):6A–13APubMedGoogle Scholar
  7. 7.
    Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113(6):709–724PubMedPubMedCentralGoogle Scholar
  8. 8.
    Byrne NJ et al (2016) Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res 110(2):249–257PubMedPubMedCentralGoogle Scholar
  9. 9.
    Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356(11):1140–1151PubMedGoogle Scholar
  10. 10.
    Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129PubMedGoogle Scholar
  11. 11.
    Fillmore N, Lopaschuk GD (2013) Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta 1833(4):857–865PubMedGoogle Scholar
  12. 12.
    Lopaschuk GD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258PubMedGoogle Scholar
  13. 13.
    Szablewski L (2017) Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 230(1):70–75PubMedGoogle Scholar
  14. 14.
    Liu LX et al (2017) PDK4 inhibits cardiac pyruvate oxidation in late pregnancy. Circ Res 121(12):1370–1378PubMedPubMedCentralGoogle Scholar
  15. 15.
    Vimercati C et al (2014) Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am J Physiol Heart Circ Physiol 306(5):H709–H717PubMedPubMedCentralGoogle Scholar
  16. 16.
    Schulze PC, Drosatos K, Goldberg IJ (2016) Lipid use and misuse by the heart. Circ Res 118(11):1736–1751PubMedPubMedCentralGoogle Scholar
  17. 17.
    Carley AN, Lewandowski ED (2016) Triacylglycerol turnover in the failing heart. Biochim Biophys Acta 1861(10):1492–1499PubMedGoogle Scholar
  18. 18.
    Jenei ZA et al (2011) Packing of transmembrane domain 2 of carnitine palmitoyltransferase-1A affects oligomerization and malonyl-CoA sensitivity of the mitochondrial outer membrane protein. FASEB J 25(12):4522–4530PubMedGoogle Scholar
  19. 19.
    Abdurrachim D et al (2015) Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 106(2):194–205PubMedGoogle Scholar
  20. 20.
    O’Neill HM et al (2014) AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 57(8):1693–1702PubMedGoogle Scholar
  21. 21.
    Saha AK et al (2000) Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. J Biol Chem 275(32):24279–24283PubMedGoogle Scholar
  22. 22.
    Barreto-Torres G et al (2015) The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol 308(7):H749–H758PubMedPubMedCentralGoogle Scholar
  23. 23.
    Sung MM et al (2015) AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovasc Res 107(2):235–245PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116(4):434–448PubMedGoogle Scholar
  25. 25.
    Abushouk AI et al (2017) Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 95(1):692–700PubMedGoogle Scholar
  26. 26.
    Lam VH et al (2015) Activating PPARalpha prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts. Circ Res 117(1):41–51PubMedGoogle Scholar
  27. 27.
    Smeets PJ et al (2008) Cardiac hypertrophy is enhanced in PPAR alpha−/− mice in response to chronic pressure overload. Cardiovasc Res 78(1):79–89PubMedGoogle Scholar
  28. 28.
    Drosatos K et al (2016) Cardiac myocyte KLF5 regulates Ppara expression and cardiac function. Circ Res 118(2):241–253PubMedGoogle Scholar
  29. 29.
    Palomer X et al (2016) PPARbeta/delta and lipid metabolism in the heart. Biochim Biophys Acta 1861(10):1569–1578PubMedGoogle Scholar
  30. 30.
    Burkart EM et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117(12):3930–3939PubMedPubMedCentralGoogle Scholar
  31. 31.
    Riehle C, Abel ED (2012) PGC-1 proteins and heart failure. Trends Cardiovasc Med 22(4):98–105PubMedPubMedCentralGoogle Scholar
  32. 32.
    Abo AO, Lopaschuk GD (2014) Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem Soc Trans 42(4):1043–1051Google Scholar
  33. 33.
    Guo Z (2015) Pyruvate dehydrogenase, Randle cycle, and skeletal muscle insulin resistance. Proc Natl Acad Sci U S A 112(22):E2854PubMedPubMedCentralGoogle Scholar
  34. 34.
    Gomez-Arroyo J et al (2013) Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 6(1):136–144PubMedGoogle Scholar
  35. 35.
    Christe ME, Rodgers RL (1994) Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 26(10):1371–1375PubMedGoogle Scholar
  36. 36.
    Massie BM et al (1995) Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation 91(6):1814–1823PubMedGoogle Scholar
  37. 37.
    Degens H et al (2006) Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res Cardiol 101(1):17–26PubMedGoogle Scholar
  38. 38.
    Seymour AM et al (2015) In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res 106(2):249–260PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kato T et al (2010) Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 3(3):420–430PubMedGoogle Scholar
  40. 40.
    O’Donnell JM et al (2008) The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J Mol Cell Cardiol 44(2):315–322PubMedGoogle Scholar
  41. 41.
    Lai L et al (2014) Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail 7(6):1022–1031PubMedPubMedCentralGoogle Scholar
  42. 42.
    Burke MA et al (2016) Molecular profiling of dilated cardiomyopathy that progresses to heart failure. JCI Insight 1(6):e86898PubMedPubMedCentralGoogle Scholar
  43. 43.
    Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90(2):202–209PubMedPubMedCentralGoogle Scholar
  44. 44.
    Heggermont WA et al (2016) Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail 18(12):1420–1429PubMedGoogle Scholar
  45. 45.
    Pereira RO et al (2014) GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure. J Mol Cell Cardiol 72(1):95–103PubMedPubMedCentralGoogle Scholar
  46. 46.
    Yan J et al (2009) Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119(21):2818–2828PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kundu BK et al (2015) Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 130(4):211–220PubMedPubMedCentralGoogle Scholar
  48. 48.
    Bedi KJ et al (2016) Evidence for Intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133(8):706–716PubMedPubMedCentralGoogle Scholar
  49. 49.
    Peterzan MA et al (2017) Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 313(3):H597–H616PubMedGoogle Scholar
  50. 50.
    El AZ et al (1992) Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Phys 262(4 Pt 2):H1068–H1074Google Scholar
  51. 51.
    Pound KM et al (2009) Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res 104(6):805–812PubMedPubMedCentralGoogle Scholar
  52. 52.
    Lei B et al (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36(4):567–576PubMedGoogle Scholar
  53. 53.
    Sansbury BE et al (2014) Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 7(4):634–642PubMedPubMedCentralGoogle Scholar
  54. 54.
    Davila-Roman VG et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40(2):271–277PubMedGoogle Scholar
  55. 55.
    Zhabyeyev P et al (2013) Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res 97(4):676–685PubMedGoogle Scholar
  56. 56.
    Amorim PA et al (2010) Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. J Thorac Cardiovasc Surg 140(5):1160–1167PubMedGoogle Scholar
  57. 57.
    Osorio JC et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106(5):606–612PubMedGoogle Scholar
  58. 58.
    Doenst T et al (2010) Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 86(3):461–470PubMedGoogle Scholar
  59. 59.
    Gupte AA et al (2014) Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ Cardiovasc Genet 7(3):266–276PubMedPubMedCentralGoogle Scholar
  60. 60.
    Tuunanen H, Ukkonen H, Knuuti J (2008) Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 10(2):142–148PubMedGoogle Scholar
  61. 61.
    Riehle C, Abel ED (2016) Insulin signaling and heart failure. Circ Res 118(7):1151–1169PubMedPubMedCentralGoogle Scholar
  62. 62.
    Aubert G et al (2016) The failing heart relies on ketone bodies as a fuel. Circulation 133(8):698–705PubMedPubMedCentralGoogle Scholar
  63. 63.
    Sun H et al (2016) Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133(21):2038–2049PubMedPubMedCentralGoogle Scholar
  64. 64.
    Foster DB et al (2016) Integrated omic analysis of a guinea pig model of heart failure and sudden cardiac death. J Proteome Res 15(9):3009–3028PubMedPubMedCentralGoogle Scholar
  65. 65.
    Hunter WG et al (2016) Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc 5(8):e003190PubMedPubMedCentralGoogle Scholar
  66. 66.
    Ruiz M et al (2017) Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am J Physiol Heart Circ Physiol 313(4):H768–H781PubMedGoogle Scholar
  67. 67.
    Ahmad T et al (2016) Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol 67(3):291–299PubMedPubMedCentralGoogle Scholar
  68. 68.
    Fragasso G et al (2006) A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol 48(5):992–998PubMedGoogle Scholar
  69. 69.
    Fragasso G et al (2011) Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure. Heart 97(18):1495–1500PubMedGoogle Scholar
  70. 70.
    Tuunanen H et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114(20):2130–2137PubMedGoogle Scholar
  71. 71.
    Salerno A et al (2015) Effects of short-term manipulation of serum FFA concentrations on left ventricular energy metabolism and function in patients with heart failure: no association with circulating bio-markers of inflammation. Acta Diabetol 52(4):753–761PubMedGoogle Scholar
  72. 72.
    Martin MA et al (2000) Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure. Biochim Biophys Acta 1502(3):330–336PubMedGoogle Scholar
  73. 73.
    Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171(8):2080–2090PubMedPubMedCentralGoogle Scholar
  74. 74.
    Wang Y et al (2013) Integrated proteomic and metabolomic analysis reveals the NADH-mediated TCA cycle and energy metabolism disorders based on a new model of chronic progressive heart failure. Mol BioSyst 9(12):3135–3145PubMedGoogle Scholar
  75. 75.
    Warren JS et al (2017) Metabolic reprogramming via PPARalpha signaling in cardiac hypertrophy and failure: from metabolomics to epigenetics. Am J Physiol Heart Circ Physiol 313(3):H584–H596PubMedGoogle Scholar
  76. 76.
    Kaimoto S et al (2017) Activation of PPAR-alpha in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 312(2):H305–H313PubMedGoogle Scholar
  77. 77.
    Oka S et al (2015) Peroxisome proliferator activated receptor-alpha association with silent information regulator 1 suppresses cardiac fatty acid metabolism in the failing heart. Circ Heart Fail 8(6):1123–1132PubMedPubMedCentralGoogle Scholar
  78. 78.
    Morgan EE et al (2006) Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am J Physiol Heart Circ Physiol 290(5):H1899–H1904PubMedGoogle Scholar
  79. 79.
    Ogata T et al (2004) Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. J Am Coll Cardiol 43(8):1481–1488PubMedGoogle Scholar
  80. 80.
    Brigadeau F et al (2007) The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 49(6):408–415PubMedGoogle Scholar
  81. 81.
    Cheng L et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10(11):1245–1250PubMedGoogle Scholar
  82. 82.
    El AH et al (2013) The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metab 18(3):341–354Google Scholar
  83. 83.
    Sihag S et al (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46(2):201–212PubMedGoogle Scholar
  84. 84.
    Riehle C et al (2011) PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res 109(7):783–793PubMedPubMedCentralGoogle Scholar
  85. 85.
    Lopaschuk GD, Ussher JR (2016) Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res 119(11):1173–1176PubMedGoogle Scholar
  86. 86.
    Wende AR et al (2017) Metabolic origins of heart failure. JACC Basic Transl Sci 2(3):297–310PubMedPubMedCentralGoogle Scholar
  87. 87.
    Cotter DG, Schugar RC, Crawford PA (2013) Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 304(8):H1060–H1076PubMedPubMedCentralGoogle Scholar
  88. 88.
    Yokokawa T et al (2016) Exhaled acetone concentration is related to hemodynamic severity in patients with non-ischemic chronic heart failure. Circ J 80(5):1178–1186PubMedGoogle Scholar
  89. 89.
    Obokata M et al (2017) Association between circulating ketone bodies and worse outcomes in hemodialysis patients. J Am Heart Assoc 6(10):e006885PubMedPubMedCentralGoogle Scholar
  90. 90.
    Taegtmeyer H (2016) Failing heart and starving brain: ketone bodies to the rescue. Circulation 134(4):265–266PubMedGoogle Scholar
  91. 91.
    Kolwicz SJ, Airhart S, Tian R (2016) Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circulation 133(8):689–691PubMedPubMedCentralGoogle Scholar
  92. 92.
    Wang W et al (2016) Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 311(5):H1160–H1169PubMedGoogle Scholar
  93. 93.
    Tanada Y et al (2015) Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci 137(1):20–27PubMedGoogle Scholar
  94. 94.
    Takata M et al (2017) An exploratory study on the efficacy and safety of a BCAA preparation used in combination with cardiac rehabilitation for patients with chronic heart failure. BMC Cardiovasc Disord 17(1):205PubMedPubMedCentralGoogle Scholar
  95. 95.
    Huynh K (2016) Heart failure: ketone bodies as fuel in heart failure. Nat Rev Cardiol 13(3):122–123PubMedGoogle Scholar
  96. 96.
    Biesele JJ, Tobioka M (1956) Mitochondria in living cells: an analysis of movements. J Biophys Biochem Cytol 2(4 Suppl):319–324PubMedPubMedCentralGoogle Scholar
  97. 97.
    Maneechote C et al (2017) Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 21(11):2643–2653PubMedPubMedCentralGoogle Scholar
  98. 98.
    Nan J et al (2017) TNFR2 stimulation promotes mitochondrial fusion via Stat3- and NF-kB-dependent activation of OPA1 expression. Circ Res 121(4):392–410PubMedPubMedCentralGoogle Scholar
  99. 99.
    Wai T et al (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350(6265):aad0116PubMedGoogle Scholar
  100. 100.
    Nan J et al (2017) Molecular regulation of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta 1864(7):1260–1273Google Scholar
  101. 101.
    Martin OJ et al (2014) A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114(4):626–636PubMedGoogle Scholar
  102. 102.
    Tsushima K et al (2018) Mitochondrial reactive oxygen species in Lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 122(1):58–73PubMedGoogle Scholar
  103. 103.
    Hensley CT et al (2016) Metabolic heterogeneity in human lung tumors. Cell 164(4):681–694PubMedPubMedCentralGoogle Scholar
  104. 104.
    Faubert B et al (2017) Lactate metabolism in human lung tumors. Cell 171(2):358–371.e9PubMedPubMedCentralGoogle Scholar
  105. 105.
    Li Q et al (2015) Multiple mass isotopomer tracing of acetyl-CoA metabolism in Langendorff-perfused rat hearts: channeling of acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. J Biol Chem 290(13):8121–8132PubMedPubMedCentralGoogle Scholar
  106. 106.
    Nadtochiy SM et al (2015) Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation. J Mol Cell Cardiol 88(1):64–72PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Cardiovascular Disease, Fuwai Hospital; National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC)BeijingPeople’s Republic of China

Personalised recommendations