Journal of the History of Biology

, Volume 52, Issue 1, pp 125–160 | Cite as

How Seeing Became Knowing: The Role of the Electron Microscope in Shaping the Modern Definition of Viruses

  • Ton van Helvoort
  • Neeraja SankaranEmail author


This paper examines the vital role played by electron microscopy toward the modern definition of viruses, as formulated in the late 1950s. Before the 1930s viruses could neither be visualized by available technologies nor grown in artificial media. As such they were usually identified by their ability to cause diseases in their hosts and defined in such negative terms as “ultramicroscopic” or invisible infectious agents that could not be cultivated outside living cells. The invention of the electron microscope, with magnification and resolution powers several orders of magnitude better than that of optical instruments, opened up possibilities for biological applications. The hitherto invisible viruses lent themselves especially well to investigation with this new instrument. We first offer a historical consideration of the development of the instrument and, more significantly, advances in techniques for preparing and observing specimens that turned the electron microscope into a routine biological tool. We then describe the ways in which the electron microscopic images, or micrographs, functioned as forms of new knowledge about viruses and resulted in a paradigm shift in the very definition of these entities. Micrographs were not mere illustrations since they did the work for the electron microscopists. Drawing extensively on primary publications, we adduce the role of the new instrument in understanding the so-called eclipse phase in virus multiplication and the unexpected spinoffs of data from electron microscopy in naming and classifying viruses. Thus, we show that electron microscopy functioned not only to provide evidence, but also arguments in facilitating a reordering of the world that it brought into the visual realm.


Electron microscope Modern definition of viruses Visualization Virus morphology Virus classification Virus multiplication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afzelius, Björn A. 1981. “Half a Century of Electron Microscopy: The Early Years.” Ultrastructural Pathology 2(3): 309–311.Google Scholar
  2. Almeida, J. D., Howatson, A. F., Pinteric, L. and Fenje, P. 1962. “Electron Microscope Observations on Rabies Virus by Negative Staining.” Virology 18(1): 147–151.Google Scholar
  3. Anderson, Thomas F. 1942. “The Application of the Electron Microscope to Biology.” The Collecting Net 17: 4–6.Google Scholar
  4. Anderson, Thomas F. 1950. “The Use of Critical Point Phenomena in Preparing Specimens for the Electron Microscope.” Journal of Applied Physics 21(7): 724. Scholar
  5. Anderson, Thomas F. 1951. “Techniques for the Preservation of the Three Dimensional Structure in Preparing Specimens for the Electron Microscope.” Transactions of the New York Academy of Sciences 13 (4 Series II): 130–134.Google Scholar
  6. Anderson, Thomas F. 1952. “Stereoscopic Studies of Cells and Viruses in the Electron Microscope.” The American Naturalist 86(827): 91–100.Google Scholar
  7. Anderson, Thomas F. 1953. “The Morphology and Osmotic Properties of Bacteriophage Systems.” Cold Spring Harbor Symposia on Quantitative Biology 18(January): 197–203. Scholar
  8. Anderson, Thomas F. 1966. “Electron Microscopy of Phages.” J. Cairns, G. S. Stent, J. D. Watson (eds.), Phage and the Origins of Molecular Biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory of Quantitative Biology, pp. 63–78.Google Scholar
  9. Anderson, Thomas F. 1975. “Some Personal Memories of Research.” Annual Reviews in Microbiology 29(1): 1–19.Google Scholar
  10. Andrewes, Christopher H. 1951. “Viruses and Linnaeus.” Acta Pathologica Microbiologica Scandinavica 28(3): 211–225. Scholar
  11. Andrewes, Christopher H. 1952. “Classification and Nomenclature of Viruses.” Annual Reviews in Microbiology 6(1): 119–138.Google Scholar
  12. Andrewes, F. W. 1930. “The Nomenclature and Classification of Micro-Organisms.” In A System of Bacteriology in Relation to Medicine, 1:292–310. London: His Majesty’s Stationery Office.Google Scholar
  13. Astbury, W. T. and Bell, F.O. 1938. “X-Ray Study of Thymonucleic Acid.” Nature 141(3573): 747.Google Scholar
  14. Bawden, F. C. 1942. “Crystallography and Plant Viruses.” Nature 149: 321–322.Google Scholar
  15. Bawden, F. C., Pirie, N. W., Bernal, J. D. and Fankuchen, I. 1936. “Liquid Crystalline Substances from Virus-Infected Plants.” Nature 138(3503): 1051–1052.Google Scholar
  16. Bawden, F. C. and N. W. Pirie. 1937. “The Isolation and Some Properties of Liquid Crystalline Substances from Solanaceous Plants Infected with Three Strains of Tobacco Mosaic Virus.” Proceedings of the Royal Society of London. Series B, Biological Sciences 123 (832): 274–320.Google Scholar
  17. Beijerinck, Martinus W. 1898. “Ueber ein contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblatter.” Verh. Kon. Akad. Wetensch. 63: 3–21. [Translated and published in English as Beijerinck, Martinus W. 1898. “Concerning a Contagium Vivum Fluidum as Cause of the Spot Disease of Tobacco-Leaves.” Phytopathological Classics 7: 33–52.]Google Scholar
  18. Bennett, C. W. 1939. “The Nomenclature of Plant Viruses.” Phytopathology 29: 422–430.Google Scholar
  19. Bernal, J. D. and Crowfoot, D. 1934. “X-ray Photographs of Crystalline Pepsin.” Nature 133: 794–795.Google Scholar
  20. Bernhard, W., Bauer, A., Harel, J. and Oberling, C. 1954. “Intracytoplasmic Forms of the Shope Papilloma Virus; Electron Microscopy of Ultrafine Sections.” Bulletin de l’Association française pour l’étude du cancer 41(4): 423–444.Google Scholar
  21. Bos, L. 1999. “Beijerinck’s Work on Tobacco Mosaic Virus: Historical Context and Legacy.” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354(1383): 675–685.Google Scholar
  22. Brandes, J. and Bercks, R. 1965. “Gross Morphology and Serology as a Basis for Classification of Elongated Plant Viruses.” Advances in Virus Research 11: 1–24.Google Scholar
  23. Burnet, F. M. 1929. “A Method for the Study of Bacteriophage Multiplication in Broth.” British Journal of Experimental Pathology 10(2): 109–115.Google Scholar
  24. Burnet, F. M. 1953. “Virology as an Independent Science Lecture II: The Substance of Virology.” The Medical Journal of Australia 2: 841–845.Google Scholar
  25. Caspar, Donald L. D. and Klug, Aaron. 1962. “Physical Principles in the Construction of Regular Viruses.” Cold Spring Harbor Symposia on Quantitative Biology 27:1–24. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  26. Creager, Angela N. H. 1996. “Wendell Stanley’s Dream of a Free-Standing Biochemistry Department at the University of California, Berkeley.” Journal of the History of Biology 29(3): 331–360.Google Scholar
  27. Creager, Angela N. H. 2002. The Life of a Virus: Tobacco Mosaic Virus as an Experimental Model, 1930-1965. Chicago: University of Chicago Press.Google Scholar
  28. Crick, Francis H. C., and Watson, James D. 1956. “Structure of Small Viruses.” Nature 177(4506): 473–475.Google Scholar
  29. Crick, Francis H. C. and Watson, James D. 1957. “Virus Structure: General Principles.” In G. E. W. Wolstenholme and E. C. P. Millar (eds.),The Nature of Viruses London: J. & A. Churchill Ltd., 5–18.Google Scholar
  30. Dmochowski, Leon. 1960. “Viruses and Tumors in the Light of Electron Microscope Studies: A Review.” Cancer Research 20(7): 977–1015.Google Scholar
  31. Dmochowski, Leon. 1963. “The Search for Human Tumor Viruses.” Texas Reports on Biology and Medicine 21: 113–135.Google Scholar
  32. Doermann, A. H. 1948. “Intracellular Growth of Bacteriophage.” Carnegie Institution of Washington Yearbook 47: 176–182.Google Scholar
  33. Doermann, A. H. 1966. “The Eclipse in the Bacteriophage Life Cycle.” J. Cairns, G. S. Stent, J. D. Watson (eds.), Phage and the Origins of Molecular Biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory of Quantitative Biology, pp. 79–87.Google Scholar
  34. Ellis, Emory L., Delbrück, Max. 1939. “The Growth of Bacteriophage.” The Journal of General Physiology 22(3): 365–384.Google Scholar
  35. Falconer, Isobel. 1987. “Corpuscles, Electrons and Cathode Rays: J.J. Thomson and the ‘Discovery of the Electron.’” The British Journal for the History of Science 20(3): 241–276. Scholar
  36. Fraenkel-Conrat, Heinz. 1981. “Portraits of Viruses: Tobacco Mosaic Virus.” Intervirology 15(4): 177–189.Google Scholar
  37. Fraenkel-Conrat, Heinz, and Williams, Robley C. 1955. “Reconstitution of Active Tobacco Mosaic Virus from Its Inactive Protein and Nucleic Acid Components.” Proceedings of the National Academy of Sciences 41(10): 690–698.Google Scholar
  38. Franklin, Rosalind E. and Gosling, R. G. 1953. “Molecular Configuration in Sodium Thymonucleate.” Nature 171: 740–741.Google Scholar
  39. Gelderblom, Hans R., and Krüger, Detlev H. 2014. “Helmut Ruska (1908–1973): His Role in the Evolution of Electron Microscopy in the Life Sciences, and Especially Virology.” Advances in Imaging and Electron Physics 182: 1–94.Google Scholar
  40. Gest, Howard. 2004. “The Discovery of Microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, Fellows of the Royal Society.” Notes and Records of the Royal Society of London 58(2): 187–201.Google Scholar
  41. Glauert, Audrey M., and Lewis, Peter R. 2014. Biological Specimen Preparation for Transmission Electron Microscopy. Princeton, NJ: Princeton University Press.Google Scholar
  42. Green, Robert G. 1935. “On the Nature of Filterable Viruses.” Science 82(2132): 443–445.Google Scholar
  43. Hart, Roger G. 1955. “Electron-Microscopic Evidence for the Localization of Ribonucleic Acid in the Particles of Tobacco Mosaic Virus.” Proceedings of the National Academy of Sciences 41(5): 261–264.Google Scholar
  44. Henle, Werner. 1949. “Studies on Host-Virus Interactions in the Chick Embryo-Influenza Virus System. II. The Propagation of Virus in Conjunction With the Host Cells.” Journal of Experimental Medicine 90(1): 13–22. Scholar
  45. Henle, Werner. 1953. “Developmental Cycles in Animal Viruses.” Cold Spring Harbor Symposia on Quantitative Biology, 18: 35-44. Cold Spring Harbor, NY: Cold Spring Harbor Press. Scholar
  46. Henle, Werner and Henle, Gertrude. 1949. “Studies on Host-Virus Interactions in the Chick Embryo-Influenza Virus System. III. Development of Infectivity, Hemagglutination, and Complement Fixation Activities during the First Infectious Cycle.” Journal of Experimental Medicine 90(1): 23–37.Google Scholar
  47. Hillier, James. 1950. “Electron Microscopy of Microorganisms and Viruses.” Annual Reviews in Microbiology 4(1): 1–20.Google Scholar
  48. Holmes, Francis O. 1939. Handbook of Phytopathogenic Viruses. Minneapolis, MN: Burgess Publishing Company.Google Scholar
  49. Hooke, Robert. 1665. Micrographia or, Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. New York: Cosmo Classics.Google Scholar
  50. Horne, R. W. 1963. “The Structure of Viruses.” Scientific American 208(1): 48–57.Google Scholar
  51. Horne, R. W. and Wildy, P. 1964. “Virus Structure Revealed by Negative Staining.” Advances in Virus Research 10: 101–170.Google Scholar
  52. Hoyle, L. 1948. “The Growth Cycle of Influenza Virus A. A Study of the Relations between Virus, Soluble Antigen and Host Cell in Fertile Eggs Inoculated with Influenza Virus.” British Journal of Experimental Pathology 29(5): 390–399.Google Scholar
  53. Hoyle, L. 1950. “The Multiplication of Influenza Viruses in the Fertile Egg.” Epidemiology & Infection 48(3): 277–297.Google Scholar
  54. Hoyle, L. 1952. “Structure of the Influenza Virus. The Relation between Biological Activity and Chemical Structure of Virus Fractions.” Epidemiology & Infection 50(2): 229–245.Google Scholar
  55. Hoyle, L., Reed, R. and Astbury, W. T. 1953. “Electron Microscope Studies of the Structure of the Influenza Virus.” Nature 171(4345): 256–257.Google Scholar
  56. Hughes, Sally Smith. 1977. The Virus: A History of the Concept. London: Heinemann Educational Books.Google Scholar
  57. Ivanowski, D. M. 1892. “Ueber Die Mosaikkrankheit Der Tabakspflanze.” St. Petersb. Acad. Imp. Sci. Bull. 35: 67–70. [Translated in English as Ivanowski, D. M. 1942. “On the Mosaic Disease of the Tobacco Plant.” Phytopathological Classics 7: 27–30.]Google Scholar
  58. Jacob, François. 1988. The Statue Within: An Autobiography. London: Unwin Hyman Limited.Google Scholar
  59. Johnson, James. 1927. The Classification of Plant Viruses. Madison, WI: Agricultural Experiment Station of the University of Wisconsin.Google Scholar
  60. Kausche, G. A., Pfankuch, E. and Ruska, H. 1939. “Die Sichtbarmachung von Pflanzlichem Virus im Übermikroskop.” Naturwissenschaften 27: 292–299.Google Scholar
  61. Kay, Lily E. 1986. “W. M. Stanley’s Crystallization of the Tobacco Mosaic Virus, 1930-1940.” Isis 77(3): 450–472.Google Scholar
  62. Khanna, Pran Nath and Lund, Ebba. 1967. “Classification of an Avian Virus by Electron Microscopy.” Archives of Virology 20(3): 387–391.Google Scholar
  63. Kruger, D. H, Schneck, P., and Gelderblom, H.R. 2000. “Helmut Ruska and the Visualisation of Viruses.” The Lancet 355: 1713–1717.Google Scholar
  64. Laidlaw, P. P. 1938. Virus Diseases and Viruses. Cambridge: Cambridge University Press.Google Scholar
  65. Linnaeus, Carl. 1735. Systema Naturae, Sive, Regna Tria Naturae Systematice Proposita per Classes, Ordines, Genera, & Species. Leiden, The Netherlands: de Groot.
  66. Linnaeus, Carl. 1737. Genera Plantarum Eorumque Characteres Naturales Secundum Numerum, Figuram, Situm, & Proportionem Omnium Fructificationis Partium. Leiden, The Netherlands: Wishoff.Google Scholar
  67. Lloyd, Jr., Bolivar, J. and Kahler, H. 1955. “Electron Microscopy of the Virus of Rabbit Fibroma.” Journal of the National Cancer Institute 15(4): 991–999.Google Scholar
  68. Löffler, F. and Frosch, P. 1898. “Berichte der Kommission zur Erforschung der Maul- und Klauenseuche bei dem Institut für Infektionskrankheiten in Berlin.” Zbl. Bakteriol., Parasitenkunde Infektionskrankh., Abt. 28: 371–91. [Edited English translation published in Löffler, Friedrich, and Paul Frosch. 1961. “Report of the Commission for Research on the Foot-and-Mouth Disease.” In Milestones in Microbiology: 1546 to 1940, edited and translated by Thomas D. Brock, Washington, D.C.: ASM Press, 149–53.]Google Scholar
  69. Ludford, R. J., Smiles, J., and Welch, F. V. 1948. “The Study of Living Malignant Cells by Phase-Contrast and Ultra-Violet Microscopy.” Journal of Microscopy 68(1–4): 1–9.Google Scholar
  70. Luria, Salvador E. and Anderson, Thomas F. 1942. “The Identification and Characterization of Bacteriophages with the Electron Microscope.” Proceedings of the National Academy of Sciences 28(4): 127–130.Google Scholar
  71. Luria, Salvador E., Delbrück, Max, and Anderson, T. F. 1943. “Electron Microscope Studies of Bacterial Viruses.” Journal of Bacteriology 46(1): 57.Google Scholar
  72. Lwoff, André. 1957. “The Concept of Virus.” Journal of General Microbiology 17(2): 239–253.Google Scholar
  73. Lwoff, André and Tournier, Paul. 1966. “The Classification of Viruses.” Annual Review of Microbiology 20(1): 45–74. Scholar
  74. Marton, Ladislaus. 1934a. “Electron Microscopy of Biological Objects.” Nature 133(3372): 911.Google Scholar
  75. Marton, Ladislaus. 1934b. “Electron Microscopy of Biological Objects.” Physical Reviews 46: 527–528.Google Scholar
  76. Marton, Ladislaus. 1941. “The Electron Microscope: A New Tool for Bacteriological Research.” Journal of Bacteriology 41(3): 397–413.Google Scholar
  77. Marton, Ladislaus. 1943. “Alice in Electronland.” American Scientist 31(3): 247–254.Google Scholar
  78. Marton, Ladislaus. 1945. “The Electron Microscope and Its Applications.” In Frontiers in Chemistry, vol. 4: Major Instruments of Science and Their Applications to Chemistry, edited by Robert Emmett Burk and Oliver Crummitt, 17–40.
  79. Marton, Ladislaus. 1968. Early History of the Electron Microscope. San Francisco, CA: San Francisco Press.Google Scholar
  80. Marton, Ladislaus. 1976. “Early Application of Electron Microscopy to Biology.” Ultramicroscopy 1: 281–296.Google Scholar
  81. Matsumoto, Seiichi. 1962. “Electron Microscopy of Nerve Cells Infected with Street Rabies Virus.” Virology 17(1): 198–202.Google Scholar
  82. McKinley, Earl B. 1931. “The Filterable Viruses.” The Scientific Monthly 32(5): 398–403.Google Scholar
  83. McKinley, Earl B. 1932. “A Concept of the Ultramicroscopic Virus Diseases and a Classification.” Science 76(1977): 449–454.Google Scholar
  84. Melnick, Joseph L. 1943. “The Ultracentrifuge as an Aid in the Detection of Poliomyelitis Virus.” Journal of Experimental Medicine 77(3): 195–204.Google Scholar
  85. Mosley, Adam. 2007. “Objects, Texts and Images in the History of Science.” Studies in History and Philosophy of Science Part A 38(2): 289–302.Google Scholar
  86. Perry, Robert P. 2005. “Thomas Foxen Anderson, 1911-1991.” Biographical Memoirs of the National Academy of Sciences 87: 3–24.Google Scholar
  87. Pickstone, John V. 1993. “Ways of Knowing: Towards a Historical Sociology of Science, Technology and Medicine.” British Journal for the History of Science 26(4): 433–458.Google Scholar
  88. Pickstone, John V. 2000. Ways of Knowing: A New History of Science, Technology, and Medicine. Manchester: Manchester University Press.Google Scholar
  89. Pirie, N. W. 1948. “Development of Ideas in the Nature of Viruses.” British Medical Bulletin 5(4–5): 329–332.Google Scholar
  90. Pirie, N. W. 1962. “Principles of Classification Illustrated by the Problem of Virus Classification.” Perspectives in Biology and Medicine 5(4): 446–472.Google Scholar
  91. Rasmussen, Nicolas. 1993. “Facts, Artifacts, and Mesosomes: Practicing Epistemology with the Electron Microscope.” Studies in History and Philosophy of Science Part A 24(2): 227–265.Google Scholar
  92. Rasmussen, Nicolas. 1996. “Making a Machine Instrumental: RCA and the Wartime Origins of Biological Electron Microscopy in America, 1940–1945.” Studies in History and Philosophy of Science Part A 27(3): 311–349.Google Scholar
  93. Rasmussen, Nicolas. 1999. Picture Control: The Electron Microscope and the Transformation of Biology in America, 1940-1960. Stanford, CA: Stanford University Press.Google Scholar
  94. Reisner, John H. 1989. “An Early History of the Electron Microscope in the United States.” Advances in Electronics and Electron Physics 73: 133–231.Google Scholar
  95. Rheinberger, Hans-Jörg. 1993. “Experiment and Orientation: Early Systems of in Vitro Protein Synthesis.” Journal of the History of Biology 26(3): 443–471.Google Scholar
  96. Rheinberger, Hans-Jörg. 1997. Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube. Stanford, CA: Stanford University Press.Google Scholar
  97. Rheinberger, Hans-Jörg. 1998. “Ernest F. Gale and Protein Synthesis: The Difficulties of Analysing a Complex System.” Trends in Biochemical Sciences 23(9): 362–365.Google Scholar
  98. Rice, V., Kaesberg, P., and Stahmann, M. A. 1953. “The Breaking of Tobacco Mosaic Virus Using a New Freeze Drying Method.” Biochimica et Biophysica Acta 11(3): 337–343. Scholar
  99. Rivers, Thomas M. 1927. “Filterable Viruses: A Critical Review.” Journal of Bacteriology 14(4): 217–258.Google Scholar
  100. Rivers, Thomas M. 1932. “The Nature of Viruses.” Physiological Reviews 12(3): 423–452.Google Scholar
  101. Rivers, Thomas M. and Benison, Saul. 1967. Tom Rivers; Reflections on a Life in Medicine and Science: An Oral History Memoir Prepared by Saul Benison. Cambridge: MIT Press.Google Scholar
  102. Ruska, Ernst. 1934a. “Über Fortschritte im Bau und in der Leistung des magnetischen Elektronenmikroskops.” Zeitschrift fÜr Physik 87(9–10): 580–602. Scholar
  103. Ruska, Ernst. 1934b. “Über ein magnetisches Objektiv fÜr das Elektronenmikroskop.” Zeit-schrift fÜr Physik 89(1–2): 90–128. Scholar
  104. Ruska, Ernst. 1934c. “Das Elektronenmikroskop als Übermikroskop.” Forschungen und Fortschritte 10: 8.Google Scholar
  105. Ruska, Ernst. 1986a. “The Emergence of the Electron Microscope: Connection between Realization and First Patent Application, Documents of an Invention.” Journal of Ultrastructure and Molecular Structure Research 95(1–3): 3–28.Google Scholar
  106. Ruska, Ernst. 1986b. Nobel Lecture: “The Development of the Electron Microscope and of Electron Microscopy.”
  107. Ruska, Helmut. 1940. “Die Sichtbarmachung der Bakteriophagen Lyse im Übermikroskop.” Naturwissenschaften 28: 45–46.Google Scholar
  108. Ruska, Helmut. 1941. “Uber ein neues bei der bakteriophagen Lyse auftretendes Formelement.” Naturwissenschaften 29(September): 367–368.Google Scholar
  109. Ruska, Helmut, von Borries, Bodo, and Ruska, Ernst. 1939/1940. “Die Bedeutung der Übermikroskopie fÜr die Virusforschung.” Archives of Virology 1 (1): 155–169.Google Scholar
  110. Sankaran, Neeraja. 2008. “Stepping-Stones to One-Step Growth: Frank Macfarlane Burnet’s Role in Elucidating the Viral Nature of the Bacteriophages.” Historical Records of Australian Science 19(1): 83–100.Google Scholar
  111. Schwerdt, Carlton E., Williams, Robley C., Stanley, Wendell M., Schaffer, Frederick L., and McClain, Mary E. 1954. “Morphology of Type II Poliomyelitis Virus (MEF1) as Determined by Electron Microscopy.” Proceedings of the Society for Experimental Biology and Medicine 86(2): 310–312.Google Scholar
  112. Shiers, George. 1974. “Ferdinand Braun and the Cathode Ray Tube.” Scientific American 230(3): 92–101.Google Scholar
  113. Siebeck, Richard. 1936. “Professional Assessment Concerning Advances in Medical Science.” In The Early Development of Electron Lenses and Electron Microscopy, edited by Ernst Ruska, translated by T. Mulvey, 123–25. Stuttgart: S. Hirzel Verlag.Google Scholar
  114. Stanley, W. M. 1935. “Isolation of a Crystalline Protein Possessing the Properties of Tobacco-Mosaic Virus.” Science 81(2113): 644–645. Scholar
  115. Stanley, W. M. and Thomas F. Anderson. 1941. “A Study of Purified Viruses with the Electron Microscope.” Journal of Biological Chemistry 139 (1): 325–38. [Reprinted in Studies from the Rockefeller Institute for Medical Research: Reprints, 119: 571–84.]Google Scholar
  116. Steere, R. L. 1964. “Electron Microscopy of Plant Viruses.” The Botanical Review 30(4): 629–666.Google Scholar
  117. St. Whitelock, O., Furness, F. N., Sturgeon, P. A., and Huebner, R.K. (eds.) 1957. Viruses in Search of Disease. New York: Annals of the New York Academy of Sciences.Google Scholar
  118. Summers, William C. 2014. “Inventing Viruses.” Annual Review of Virology 1(1): 25–35. Scholar
  119. Sumner, J. B. 1926. “The Isolation and Crystallization of the Enzyme Urease.” Journal of Biological Chemistry 69: 435–441.Google Scholar
  120. Takahashi, W. N. and Ishii, M. 1952. “An Abnormal Protein Associated with Tobacco Mosaic Virus Infection.” Nature 169(4297): 419–420. Scholar
  121. Van Gorkom, J., van Delft, D. and van Helvoort, T. 2018. “The Early Electron Microscopes: A Critical Study.” In P. Hawkes (ed.) Advances in Imaging and Electron Physics. 205: 1–137. Scholar
  122. Van Helvoort, T. 1991. “What Is a Virus? The Case of Tobacco Mosaic Disease.” Studies in History and Philosophy of Science 22(4): 557–588.Google Scholar
  123. Van Helvoort, T. 1993. “A Bacteriological Paradigm in Influenza Research in the First Half of the Twentieth Century.” History and Philosophy of the Life Sciences 15(1): 3–21.Google Scholar
  124. Van Helvoort, T. 1994. “History of Virus Research in the Twentieth Century: The Problem of Conceptual Continuity.” History of Science 32(96): 185–235.Google Scholar
  125. Van Helvoort, T. 1996. “When Did Virology Start?” ASM News 62(3): 142–145.Google Scholar
  126. Von Borries, B., Ruska, E., and Ruska, H. 1938. “Bakterien und Virus in übermikroskopischer Aufnahme.” Klinische Wochenschrift 17(27): 921–925.Google Scholar
  127. Waterson, A. P. and Wilkinson, Lise. 1978. An Introduction to the History of Virology. Cambridge: Cambridge University Press.Google Scholar
  128. Watson, J. D. and Crick, F. H. C. 1953a. “Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid.” Nature 171(4356): 737–738.Google Scholar
  129. Watson, J. D. and Crick, F. H. C. 1953b. “Genetical Implications of the Structure of Deoxyribonucleic Acid.” Nature 171(4361): 964–967. Scholar
  130. Wildy, P. 1962. “Classifying Viruses at Higher Levels: Symmetry and Structure of Virus Particles as Criteria.” Symposium of the Society for General Microbiology 12: 145–163.Google Scholar
  131. Williams, Greer. 1959. Virus Hunters. New York: Alfred A. Knopf.Google Scholar
  132. Williams, Robley C. 1947. “The Electron Microscope in Biology.” Growth 11(4): 205–222.Google Scholar
  133. Williams, Robley C. 1953. “A Method of Freeze-Drying for Electron Microscopy.” Experimental Cell Research 4(1): 188–201.Google Scholar
  134. Williams, Robley C. 1957. “The Role of the Electron Microscope in Virus Research.” In G. H. Bourne and J. F. Danielli (eds.), International Review of Cytology. New York: Academic Press, vol. 6, pp. 129–91. 08618045.
  135. Williams, R. C., Kass, S. J., and Knight, C. A. 1960. “Structure of Shope Papilloma Virus Particles.” Virology 12(1): 48–58.Google Scholar
  136. Williams, Robley C. and Wyckoff, Ralph W. G. 1944. “The Thickness of Electron Microscopic Objects.” Journal of Applied Physics 15(10): 712–716.Google Scholar
  137. Williams, Robley C. and Wyckoff, Ralph W. G. 1945. “Electron Shadow Micrography of the Tobacco Mosaic Virus Protein.” Science 101(2632): 594–596. Scholar
  138. Wise, M., Norton. 2006. “Making Visible.” Isis 97(1): 75–82.Google Scholar
  139. Woodruff, Alice Miles, and Goodpasture, Ernest W. 1931. “The Susceptibility of the Chorio-Allantoic Membrane of Chick Embryos to Infection with the Fowl-Pox Virus.” The American Journal of Pathology 7(3): 209–222.Google Scholar
  140. Zworykin, V. K. 1940. “An Electron Microscope for the Research Laboratory.” Science 92(2377): 51–53.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.ElslooThe Netherlands
  2. 2.BangaloreIndia

Personalised recommendations