Advertisement

Journal of Molecular Histology

, Volume 50, Issue 6, pp 493–502 | Cite as

Periostin-modified bone marrow mesenchymal stem cells from osteoporotic rats promote alveolar bone regeneration

  • Doudou Li
  • Weiwei Zhou
  • Meng CaoEmail author
Original Paper
  • 217 Downloads

Abstract

Bone regeneration is impaired in patients with osteoporosis. Previous studies have shown that periostin (Postn) shows great potential in bone regeneration treatments. However, the role of Postn in bone marrow mesenchymal stem cells (BMMSCs) remains to be elucidated. In this study, we isolated BMMSCs from ovariectomized rats (OVX-BMMSCs) and normal rats. Then, the expression levels of Postn and osteogenesis in OVX-BMMSCs were detected by alizarin red and alkaline phosphatase substrate staining, qPCR, and western blotting. We found that the levels of Postn in OVX-BMMSCs were significantly reduced. Furthermore, Postn overexpression in OVX-BMMSCs using recombinant lentivirus could improve the expression of alkaline phosphatase, runt-related transcription factor 2, and osteocalcin and reduce the expression of sclerostin. Besides, micro-computed tomography analysis, hematoxylin-eosin, and Masson’s staining showed that the healing of the alveolar bone defect in osteoporotic rats could be promoted using Postn-modified OVX-BMMSC sheets. In conclusion, Postn-modified OVX-BMMSCs might restore the osteogenic capacity and promote alveolar bone regeneration, which may serve as a new therapeutic approach for bone regeneration in osteoporosis.

Keywords

Osteoporosis BMMSCs Periostin Gene modification Alveolar bone regeneration 

Notes

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant Numbers 81470774).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

10735_2019_9843_MOESM1_ESM.pdf (499 kb)
Supplementary file1 (PDF 499 kb)

References

  1. Akifumi N, Manabu A, Hideki S, Mika T, Yusuke M, Hajime O, Yoshiko D, Tomoaki I, Yasuhito T (2010) Cell sheet transplantation of cultured mesenchymal stem cells enhances bone formation in a rat nonunion model. Bone 46(2):418–424CrossRefGoogle Scholar
  2. Bonnet N, Biver E, Chevalley T, Rizzoli R, Garnero P, Ferrari SL (2017) Serum Levels of a Cathepsin-K Generated Periostin Fragment Predict Incident Low-Trauma Fractures in Postmenopausal Women Independently of BMD and FRAX. J Bone Miner Res 32(11):2232–2238CrossRefGoogle Scholar
  3. Chang SC, Chuang HL, Chen YR, Chen JK, Chung HY, Lu YL, Lin HY, Tai CL, Lou J (2003) Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther 10(24):2013–2019CrossRefGoogle Scholar
  4. Collignon AM, Lesieur J, Anizan N, Azzouna RB, Poliard A, Gorin C, Letourneur D, Chaussain C, Rouzet F, Rochefort GY (2018) Early angiogenesis detected by PET imaging with (64)Cu-NODAGA-RGD is predictive of bone critical defect repair. Acta Biomater 82:111–121CrossRefGoogle Scholar
  5. Du J, Li MQ (2017) Functions of Periostin in dental tissues and its role in periodontal tissues' regeneration. Cell Mol Life Sci 74(23):4279–4286CrossRefGoogle Scholar
  6. Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C (2018) Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 9(1):773CrossRefGoogle Scholar
  7. Fougere B, Boulanger E, Nourhashemi F, Guyonnet S, Cesari M (2017) Chronic Inflammation: Accelerator of Biological Aging. J Gerontol Ser A 72(9):1218–1225CrossRefGoogle Scholar
  8. Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Can Res 62(18):5358–5364Google Scholar
  9. Hahn JY, Cho HJ, Kang HJ, Kim TS, Kim MH, Chung JH, Bae JW, Oh BH, Park YB, Kim HS (2008) Pre-Treatment of Mesenchymal Stem Cells With a Combination of Growth Factors Enhances Gap Junction Formation, Cytoprotective Effect on Cardiomyocytes, and Therapeutic Efficacy for Myocardial Infarction. J Am Coll Cardiol 51(9):933–943CrossRefGoogle Scholar
  10. Hennemann A (2002) Osteoporosis: prevention, diagnosis and therapy. Med Monatsschr Pharm 25(5):164–167PubMedGoogle Scholar
  11. Heo SC, Shin WC, Lee MJ, Kim BR, Jang IH, Choi EJ, Lee JS, Kim JH (2015) Periostin accelerates bone healing mediated by human mesenchymal stem cell-embedded hydroxyapatite/tricalcium phosphate scaffold. PLoS ONE 10(3):e0116698CrossRefGoogle Scholar
  12. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14(7):1239–1249CrossRefGoogle Scholar
  13. Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, Kudo A (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285(3):2028CrossRefGoogle Scholar
  14. Kudo A (2011) Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci 68(19):3201–3207CrossRefGoogle Scholar
  15. Kudo A (2017) Introductory review: periostin-gene and protein structure. Cell Mol Life Sci 74(23):4259–4268CrossRefGoogle Scholar
  16. Landry NM, Cohen S, Dixon IMC (2018) Periostin in cardiovascular disease and development: a tale of two distinct roles. Basic Res Cardiol 113(1):1CrossRefGoogle Scholar
  17. Liu YQ, Berendsen AD, Jia SD, Lotinun S, Baron R, Ferrara N, Olsen BR (2012) Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Investig 122(9):3101–3113CrossRefGoogle Scholar
  18. Lu CH, Chang YH, Lin SY, Li KC, Hu YC (2013) Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 31(8):1695–1706CrossRefGoogle Scholar
  19. Luo C, Yang X, Li M, Huang H, Kang Q, Zhang X, Hui H, Zhang X, Cen C, Luo Y, Xie L, Wang C, He T, Jiang D, Li T, An H (2018) A novel strategy for in vivo angiogenesis and osteogenesis: magnetic micro-movement in a bone scaffold. Artif Cells Nanomed Biotechnol 46(sup2):636–645CrossRefGoogle Scholar
  20. Massimiliano G, Huamei H, Nicolas N, Liang OD, Lunan Z, Fulvio M, Hui M, Melo LG, Pratt RE, Ingwall JS (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. Faseb J 20(6):661–669CrossRefGoogle Scholar
  21. Matsuura K, Utoh R, Nagase K, Okano T (2014) Cell sheet approach for tissue engineering and regenerative medicine. J Control Release 190:228–239CrossRefGoogle Scholar
  22. O'Dwyer DN, Moore BB (2017) The role of periostin in lung fibrosis and airway remodeling. Cell Mol Life Sci 74(23):4305–4314CrossRefGoogle Scholar
  23. Prakoura N, Chatziantoniou C (2017) Periostin in kidney diseases. Cell Mol Life Sci 74(23):4315–4320CrossRefGoogle Scholar
  24. Qiao Q, Xu XR, Song YL, Song S, Zhu WZ, Li FL (2018) Semaphorin 3A promotes osteogenic differentiation of BMSC from type 2 diabetes mellitus rats. J Mol Histol 49(4):369–376CrossRefGoogle Scholar
  25. Russow G, Jahn D, Appelt J, Mardian S, Tsitsilonis S, Keller J (2018) Anabolic therapies in osteoporosis and bone regeneration. Int J Mol Sci 20(1):83CrossRefGoogle Scholar
  26. Salah RA, Mohamed IK, El-Badri N (2018) Development of decellularized amniotic membrane as a bioscaffold for bone marrow-derived mesenchymal stem cells: ultrastructural study. J Mol Histol 49(3):289–301CrossRefGoogle Scholar
  27. Shang F, Ming L, Zhou Z, Yu Y, Sun J, Ding Y, Jin Y (2014) The effect of licochalcone A on cell-aggregates ECM secretion and osteogenic differentiation during bone formation in metaphyseal defects in ovariectomized rats. Biomaterials 35(9):2789–2797CrossRefGoogle Scholar
  28. Song H, Cha MJ, Song BW, Kim IK, Chang W, Lim S, Choi EJ, Ham O, Lee SY, Chung N (2010) Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells 28(3):555–563PubMedGoogle Scholar
  29. Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, Liu Y, Zhang C, Shi S, Wang S (2012) Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. J Cell Physiol 227(9):3216–3224CrossRefGoogle Scholar
  30. Wen L, Wang Y, Wang H, Kong L, Zhang L, Chen X, Ding Y (2012) L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 424(3):439–445CrossRefGoogle Scholar
  31. Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, Tang L, Ding Y, Jin Y (2013) Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res 28(3):559–573CrossRefGoogle Scholar
  32. Yun-Hyeong C, Min-Ji C, Byeong-Wook S, Il-Kwon K, Heesang S, Woochul C, Soyeon L, Onju H, Se-Yeon L, Eunmi C (2012) Enhancement of MSC adhesion and therapeutic efficiency in ischemic heart using lentivirus delivery with periostin. Biomaterials 33(5):1376–1385CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Orthodontics, School of StomatologyFourth Military Medical UniversityXi’anChina

Personalised recommendations