Advertisement

Type XI collagen–perlecan–HS interactions stabilise the pericellular matrix of annulus fibrosus cells and chondrocytes providing matrix stabilisation and homeostasis

  • Susan M. Smith
  • James MelroseEmail author
Short Communication
  • 15 Downloads

Abstract

The aim of this study was to ascertain whether, like many cell types in cartilaginous tissues if type XI collagen was a pericellular component of annulus fibrosus (AF) cells and chondrocytes. Fine fibrillar networks were visualised which were perlecan, HS (MAb 10E4) and type XI collagen positive. Heparitinase-III pre-digestion abolished the type XI collagen and 10E4 localisation in these fibrillar assemblies demonstrating a putative HS mediated interaction which localised the type XI collagen. Type XI collagen was confirmed to be present in the Heparitinase III treated AF monolayer media samples by immunoblotting. Heparitinase-III generated ΔHS stub epitopes throughout these fibrillar networks strongly visualised by MAb 3-G-10. Monolayers of murine hip articular chondrocytes from C57BL/6 and Hspg2 exon 3 null mice also displayed pericellular perlecan localisations, however type XI collagen was only evident in the Wild type mice. Perlecan was also immunolocalised in control and murine knee articular cartilage from the two mouse genotypes subjected to a medial meniscal destabilisation procedure which induces OA. This resulted in a severe depletion of perlecan levels particularly in the perlecan exon 3 null mice and was consistent with OA representing a disease of the pericellular matrix. A model was prepared to explain these observations between the NPP type XI collagen domain and HS chains of perlecan domain-I in the pericellular matrix of AF cells which likely contributed to cellular communication, tissue stabilization and the regulation of extracellular matrix homeostasis.

Keywords

Type XI collagen Intervertebral disc Annulus fibrosus Cell–matrix communication Heparan sulfate Perlecan 

Abbreviations

IVD

Intervertebral disc

AF

Annulus fibrosus

HS

Heparan sulfate

Notes

Acknowledgements

This study was funded by NHMRC Project Grant 352562. Prof David Eyre and Dr James Wu are thanked for the kind gift of a type XI collagen stanard and Dr C Shu for provision of murine cartilage specimens from C57BL/6 and perlecan exon 3 null mice.

References

  1. Birk DE (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32:223–237CrossRefGoogle Scholar
  2. Birk DE, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103:231–240CrossRefGoogle Scholar
  3. Boissier M, Chiocchia G, Ronziere MC, Herbage D, Fournier C (1990) Arthritogenicity of minor cartilage collagens (types IX and XI) in mice. Arthritis Rheum 33:1–8CrossRefGoogle Scholar
  4. Brown RJ, Mallory C, McDougal OM, Oxford JT (2011) Proteomic analysis of Col11a1-associated protein complexes. Proteomics 11:4660–4676CrossRefGoogle Scholar
  5. Carter E, Raggio CL (2009) Genetic and orthopedic aspects of collagen disorders. Curr Opin Pediatr 21:45–54CrossRefGoogle Scholar
  6. Cremer M, Ye XJ, Terato K, Owens SW, Seyer JM, Kang AH (1994) Type XI collagen-induced arthritis in the Lewis rat. Characterization of cellular and humoral immune responses to native types XI, V, and II collagen and constituent alpha-chains. J Immunol 153:824–832Google Scholar
  7. Eyre DR, Wu JJ (1995) Collagen structure and cartilage matrix integrity. J Rheumatol Suppl 43:82–85Google Scholar
  8. Eyre DR, Weis MA, Wu JJ (2006) Articular cartilage collagen: an irreplaceable framework? Eur Cell Mater 12:57–63CrossRefGoogle Scholar
  9. Fallahi A, Kroll B, Warner LR, Oxford RJ, Irwin KM, Mercer LM, Shadle SE, Oxford JT (2005) Structural model of the amino propeptide of collagen XI alpha1 chain with similarity to the LNS domains. Protein Sci 14:1526–1537CrossRefGoogle Scholar
  10. Felka T, Rothdiener M, Bast S, Uynuk-Ool T, Zouhair S, Ochs BG, De Zwart P, Stoeckle U, Aicher WK, Hart ML, Shiozawa T, Grodzinsky AJ, Schenke-Layland K, Venkatesan JK, Cucchiarini M, Madry H, Kurz B, Rolauffs B (2016) Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology. Osteoarthritis Cartilage 24:1200–1209CrossRefGoogle Scholar
  11. Fernandes RJ, Weis M, Scott MA, Seegmiller RE, Eyre DR (2007) Collagen XI chain misassembly in cartilage of the chondrodysplasia (cho) mouse. Matrix Biol 26:597–603CrossRefGoogle Scholar
  12. Fichard A, Kleman JP, Ruggiero F (1995) Another look at collagen V and XI molecules. Matrix Biol 14:515–531CrossRefGoogle Scholar
  13. Gregory KE, Oxford JT, Chen Y, Gambee JE, Gygi SP, Aebersold R, Neame PJ, Mechling DE, Bachinger HP, Morris NP (2000) Structural organization of distinct domains within the non-collagenous N-terminal region of collagen type XI. J Biol Chem 275:11498–11506CrossRefGoogle Scholar
  14. Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I (2018) Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 71–72:40–50CrossRefGoogle Scholar
  15. Hayes AJ, Lord MS, Smith SM, Smith MM, Whitelock JM, Weiss AS, Melrose J (2011a) Colocalization in vivo and association in vitro of perlecan and elastin. Histochem Cell Biol 136:437–454CrossRefGoogle Scholar
  16. Hayes AJ, Smith SM, Gibson MA, Melrose J (2011b) Comparative immunolocalization of the elastin fiber-associated proteins fibrillin-1, LTBP-2, and MAGP-1 with components of the collagenous and proteoglycan matrix of the fetal human intervertebral disc. Spine (Phila Pa 1976) 36:E1365–E1372CrossRefGoogle Scholar
  17. Hayes AJ, Smith SM, Melrose J (2013) Comparative immunolocalisation of fibrillin-1 and perlecan in the human foetal, and HS-deficient hspg2 exon 3 null mutant mouse intervertebral disc. Histochem Cell Biol 139:1–11CrossRefGoogle Scholar
  18. Hayes AJ, Gibson MA, Shu C, Melrose J (2014) Confocal microscopy demonstrates association of LTBP-2 in fibrillin-1 microfibrils and colocalisation with perlecan in the disc cell pericellular matrix. Tissue Cell 46:185–197CrossRefGoogle Scholar
  19. Hayes AJ, Shu CC, Lord MS, Little CB, Whitelock JM, Melrose J (2016) Pericellular colocalisation and interactive properties of type VI collagen and perlecan in the intervertebral disc. Eur Cell Mater 32:40–57CrossRefGoogle Scholar
  20. Hofmann U, Steidle J, Danalache M, Bonnaire F, Walter C, Rolauffs B (2018) Chondrocyte death after mechanically overloading degenerated human intervertebral disk explants is associated with a structurally impaired pericellular matrix. J Tissue Eng Regen Med 12:2000–2010CrossRefGoogle Scholar
  21. Horikawa O, Nakajima H, Kikuchi T, Ichimura S, Yamada H, Fujikawa K, Toyama Y (2004) Distribution of type VI collagen in chondrocyte microenvironment: study of chondrons isolated from human normal and degenerative articular cartilage and cultured chondrocytes. J Orthop Sci 9:29–36CrossRefGoogle Scholar
  22. Keene DR, Oxford JT, Morris NP (1995) Ultrastructural localization of collagen types II, IX, and XI in the growth plate of human rib and fetal bovine epiphyseal cartilage: type XI collagen is restricted to thin fibrils. J Histochem Cytochem 43:967–979CrossRefGoogle Scholar
  23. Khoshgoftar M, Torzilli PA, Maher SA (2018) Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J Orthop Res 36:721–729Google Scholar
  24. Kuo HJ, Maslen CL, Keene DR, Glanville RW (1997) Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen. J Biol Chem 272:26522–26529CrossRefGoogle Scholar
  25. Kvist AJ, Nystrom A, Hultenby K, Sasaki T, Talts JF, Aspberg A (2008) The major basement membrane components localize to the chondrocyte pericellular matrix–a cartilage basement membrane equivalent? Matrix Biol 27:22–33CrossRefGoogle Scholar
  26. LeBaron RG, Hook A, Esko JD, Gay S, Hook M (1989) Binding of heparan sulfate to type V collagen. A mechanism of cell–substrate adhesion. J Biol Chem 264:7950–7956Google Scholar
  27. Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F et al (1995) A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80:423–430CrossRefGoogle Scholar
  28. Li A, Wei Y, Hung C, Vunjak-Novakovic G (2018) Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Biomaterials 173:47–57CrossRefGoogle Scholar
  29. Liu W, Sun G, Guo L, Wang L, Fan W, Lang M, Chen D, Yi X (2017) A genetic variant in COL11A1 is functionally associated with lumbar disc herniation in Chinese population. J Genet 96:867–872CrossRefGoogle Scholar
  30. Liu C, Wang B, Xiao L, Li Y, Xu L, Zhao Z, Zhang L (2018) Protective effects of the pericellular matrix of chondrocyte on articular cartilage against the development of osteoarthritis. Histol Histopathol 33:757–764Google Scholar
  31. Luo Y, Karsdal MA (2016) Type XI collagen. In: Karsdal MA (ed) Biochemistry of collagens, laminins and elastin. W. H. Freeman, New York, pp 77–80CrossRefGoogle Scholar
  32. Luo Y, Sinkeviciute D, He Y, Karsdal M, Henrotin Y, Mobasheri A, Onnerfjord P, Bay-Jensen A (2017) The minor collagens in articular cartilage. Protein Cell 8:560–572CrossRefGoogle Scholar
  33. McDougal OM, Warner LR, Mallory C, Oxford JT (2011) Predicted structure and binding motifs of collagen alpha1(Xi). GSTF Int J Bioinform Biotechnol 1:43–48Google Scholar
  34. McLeod MA, Wilusz RE, Guilak F (2013) Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy. J Biomech 46:586–592CrossRefGoogle Scholar
  35. Melrose J, Smith S, Ghosh P (2003) Assessment of the cellular heterogeneity of the ovine intervertebral disc: comparison with synovial fibroblasts and articular chondrocytes. Eur Spine J 12:57–65Google Scholar
  36. Mio F, Chiba K, Hirose Y, Kawaguchi Y, Mikami Y, Oya T, Mori M, Kamata M, Matsumoto M, Ozaki K, Tanaka T, Takahashi A, Kubo T, Kimura T, Toyama Y, Ikegawa S (2007) A functional polymorphism in COL11A1, which encodes the alpha 1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation. Am J Hum Genet 81:1271–1277CrossRefGoogle Scholar
  37. Nah HD, Barembaum M, Upholt WB (1992) The chicken alpha 1 (XI) collagen gene is widely expressed in embryonic tissues. J Biol Chem 267:22581–22586Google Scholar
  38. Petit B, Ronziere MC, Hartmann DJ, Herbage D (1993) Ultrastructural organization of type XI collagen in fetal bovine epiphyseal cartilage. Histochemistry 100:231–239CrossRefGoogle Scholar
  39. Reginato AM, Olsen BR (2002) The role of structural genes in the pathogenesis of osteoarthritic disorders. Arthritis Res 4:337–345CrossRefGoogle Scholar
  40. Ricard-Blum S, Beraud M, Raynal N, Farndale RW, Ruggiero F (2006) Structural requirements for heparin/heparan sulfate binding to type V collagen. J Biol Chem 281:25195–25204CrossRefGoogle Scholar
  41. Rodriguez RR, Seegmiller RE, Stark MR, Bridgewater LC (2004) A type XI collagen mutation leads to increased degradation of type II collagen in articular cartilage. Osteoarthritis Cartilage 12:314–320CrossRefGoogle Scholar
  42. Rojas FP, Batista MA, Lindburg CA, Dean D, Grodzinsky AJ, Ortiz C, Han L (2014) Molecular adhesion between cartilage extracellular matrix macromolecules. Biomacromol 15:772–780CrossRefGoogle Scholar
  43. Sanchez-Adams J, Wilusz RE, Guilak F (2013) Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. J Orthop Res 31:1218–1225CrossRefGoogle Scholar
  44. Sandell LJ, Sugai JV, Trippel SB (1994) Expression of collagens I, II, X, and XI and aggrecan mRNAs by bovine growth plate chondrocytes in situ. J Orthop Res 12:1–14CrossRefGoogle Scholar
  45. Shu CC, Jackson MT, Smith MM, Smith SM, Penm S, Lord MS, Whitelock JM, Little CB, Melrose J (2016) Ablation of Perlecan domain 1 heparan sulfate reduces progressive cartilage degradation, synovitis, and osteophyte size in a preclinical model of posttraumatic osteoarthritis. Arthritis Rheumatol 68:868–879CrossRefGoogle Scholar
  46. Shu CC, Smith MM, Appleyard RC, Little CB, Melrose J (2018) Achilles and tail tendons of perlecan exon 3 null heparan sulfate deficient mice display surprising improvement in tendon tensile properties and altered collagen fibril organisation compared to C57BL/6 wild type mice. PeerJ 6:e5120CrossRefGoogle Scholar
  47. Shu CC, Smith SM, Little CB, Melrose J (2019) Elevated hypertrophy, growth plate maturation, glycosaminoglycan deposition, and exostosis formation in the Hspg2 exon 3 null mouse intervertebral disc. Biochem J 476:225–243CrossRefGoogle Scholar
  48. Sirko-Osadsa D, Murray MA, Scott JA, Lavery MA, Warman ML, Robin NH (1998) Stickler syndrome without eye involvement is caused by mutations in COL11A2, the gene encoding the alpha2(XI) chain of type XI collagen. J Pediatr 132:368–371CrossRefGoogle Scholar
  49. Smeriglio P, Dhulipala L, Lai JH, Goodman SB, Dragoo JL, Smith RL, Maloney WJ, Yang F, Bhutani N (2015) Collagen VI enhances cartilage tissue generation by stimulating chondrocyte proliferation. Tissue Eng Part A 21:840–849CrossRefGoogle Scholar
  50. Smith GN Jr, Hasty KA, Brandt KD (1989) Type XI collagen is associated with the chondrocyte surface in suspension culture. Matrix 9:186–192CrossRefGoogle Scholar
  51. Smith SM, Zhang G, Birk DE (2014) Collagen V localizes to pericellular sites during tendon collagen fibrillogenesis. Matrix Biol 33:47–53CrossRefGoogle Scholar
  52. Thom JR, Morris NP (1991) Biosynthesis and proteolytic processing of type XI collagen in embryonic chick sterna. J Biol Chem 266:7262–7269Google Scholar
  53. Tompson SW, Bacino CA, Safina NP, Bober MB, Proud VK, Funari T, Wangler MF, Nevarez L, Ala-Kokko L, Wilcox WR, Eyre DR, Krakow D, Cohn DH (2010) Fibrochondrogenesis results from mutations in the COL11A1 type XI collagen gene. Am J Hum Genet 87:708–712CrossRefGoogle Scholar
  54. Vaughan-Thomas A, Young RD, Phillips AC, Duance VC (2001) Characterization of type XI collagen-glycosaminoglycan interactions. J Biol Chem 276:5303–5309CrossRefGoogle Scholar
  55. Villar MJ, Hassell JR, Brandan E (1999) Interaction of skeletal muscle cells with collagen type IV is mediated by perlecan associated with the cell surface. J Cell Biochem 75:665–674CrossRefGoogle Scholar
  56. Vogiatzi MG, Li D, Tian L, Garifallou JP, Kim CE, Hakonarson H, Levine MA (2018) A novel dominant COL11A1 mutation in a child with Stickler syndrome type II is associated with recurrent fractures. Osteoporos Int 29:247–251CrossRefGoogle Scholar
  57. Vornehm SI, Dudhia J, Von der Mark K, Aigner T (1996) Expression of collagen types IX and XI and other major cartilage matrix components by human fetal chondrocytes in vivo. Matrix Biol 15:91–98CrossRefGoogle Scholar
  58. Warner LR, Brown RJ, Yingst SM, Oxford JT (2006) Isoform-specific heparan sulfate binding within the amino-terminal noncollagenous domain of collagen alpha1(XI). J Biol Chem 281:39507–39516CrossRefGoogle Scholar
  59. Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279:53331–53337CrossRefGoogle Scholar
  60. Wenstrup RJ, Smith SM, Florer JB, Zhang G, Beason DP, Seegmiller RE, Soslowsky LJ, Birk DE (2011) Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J Biol Chem 286:20455–20465CrossRefGoogle Scholar
  61. Whitelock JM, Melrose J, Iozzo RV (2008) Diverse cell signaling events modulated by perlecan. Biochemistry 47:11174–11183CrossRefGoogle Scholar
  62. Wilusz RE, Defrate LE, Guilak F (2012) A biomechanical role for perlecan in the pericellular matrix of articular cartilage. Matrix Biol 31:320–327CrossRefGoogle Scholar
  63. Wilusz RE, Sanchez-Adams J, Guilak F (2014) The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 39:25–32CrossRefGoogle Scholar
  64. Xu X, Li Z, Leng Y, Neu CP, Calve S (2016) Knockdown of the pericellular matrix molecule perlecan lowers in situ cell and matrix stiffness in developing cartilage. Dev Biol 418:242–247CrossRefGoogle Scholar
  65. Yaoi Y, Hashimoto K, Koitabashi H, Takahara K, Ito M, Kato I (1990) Primary structure of the heparin-binding site of type V collagen. Biochim Biophys Acta 1035:139–145CrossRefGoogle Scholar
  66. Yingst S, Bloxham K, Warner LR, Brown RJ, Cole J, Kenoyer L, Knowlton WB, Oxford JT (2009) Characterization of collagenous matrix assembly in a chondrocyte model system. J Biomed Mater Res A 90:247–255CrossRefGoogle Scholar
  67. Youn I, Choi JB, Cao L, Setton LA, Guilak F (2006) Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthritis Cartilage 14:889–897CrossRefGoogle Scholar
  68. Zelenski N, Leddy HA, Sanchez-Adams J, Zhang J, Bonaldo P, Liedtke W, Guilak F (2015) Type VI collagen regulates pericellular matrix properties, chondrocyte swelling, and mechanotransduction in mouse articular cartilage. Arthritis Rheumatol 67:1286–1294CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Raymond Purves Bone and Joint Research Laboratories, Level 10, Kolling Institute of Medical Research B6The Royal North Shore HospitalSt. LeonardsAustralia
  2. 2.Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyAustralia
  3. 3.Sydney Medical School, NorthernThe University of SydneySt. LeonardsAustralia
  4. 4.Faculty of Medicine and Health, Royal North Shore HospitalUniversity of SydneySt. LeonardsAustralia

Personalised recommendations