Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Heuristic solutions to robust variants of the minimum-cost integer flow problem

Abstract

This paper deals with robust optimization applied to network flows. We consider two robust variants of the minimum-cost integer flow problem. Thereby, uncertainty in problem formulation is limited to arc costs and expressed by a finite set of explicitly given scenarios. It turns out that both problem variants are NP-hard. To solve the considered variants, we propose several heuristics based on local search or evolutionary computing. We also evaluate our heuristics experimentally on appropriate problem instances.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aissi, H., Vanderpooten, D.: Robust capacity expansion of a network under demand uncertainty: a bi-objective approach. Networks 68, 185–199 (2016)

  2. Aissi, H., Bazgan, C., Vanderpooten, D.: Min–max and min–max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197, 427–438 (2009)

  3. Aissi, H., Bazgan, C., Vanderpooten, D.: General approximation schemes for min–max (regret) versions of some (pseudo-)polynomial problems. Discrete Optim. 7, 136–148 (2010)

  4. Atamtürk, A., Zhang, M.: Two-stage robust network flow and design under demand uncertainty. Oper. Res. 55, 662–673 (2007)

  5. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows, 4th edn. Wiley, Hoboken (2010)

  6. Beasley J.E.: OR-library. Brunel University London, Personal Webpages (2018). http://people.brunel.ac.uk/~ mastjjb/jeb/info.html. Accessed 17 Dec 2018

  7. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

  8. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98, 49–71 (2003)

  9. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52, 35–53 (2004)

  10. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)

  11. Bertsimas, D., Nasrabadi, E., Stiller, S.: Robust and adaptive network flows. Oper. Res. 61, 1218–1242 (2013)

  12. Carre, B.: Graphs and Networks. Oxford University Press, Oxford (1979)

  13. DIMACS—Center for Discrete Mathematics and Theoretical Computer Science: DIMACS implementation challenges. Rutgers University, Piscataway NJ (2017). http://archive.dimacs.rutgers.edu/Challenges/. Accessed 17 Dec 2018

  14. Duque, D., Medaglia, A.L.: An exact method for a class of robust shortest path problems with scenarios. Networks 74, 360–373 (2019)

  15. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2015)

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completness. W.H. Freeman, San Francisco (1979)

  17. IBM Corporation: IBM ILOG CPLEX optimization studio, CPLEX user’s manual, version 12, release 8. IBM Knowledge Center, IBM Product Documentation (2017). https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0. Accessed 17 Dec 2018

  18. Jungnickel, D.: Graphs, Networks and Algorithms, 4th edn. Springer, Berlin (2013)

  19. Kasperski, A., Zielinski, P.: Robust discrete optimization under discrete and interval uncertainty: a survey. In: Doumpos, M., Zopounidis, C., Grigoroudis, E. (eds.) Robustness Analysis in Decision Aiding. Optimization, and Analytics, pp. 113–143. Springer, Cham (2016)

  20. Korte, B., Vygen, J.: Combinatorial Optimization—Theory and Algorithms, 5th edn. Springer, Berlin (2012)

  21. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Springer, Berlin (1997)

  22. Minoux, M.: On robust maximum flow with polyhedral uncertainty sets. Optim. Lett. 3, 367–376 (2009)

  23. Minoux, M.: Robust network optimization under polyhedral demand uncertainty is NP-hard. Discrete Appl. Math. 158, 597–603 (2010)

  24. Ordoñez, F., Zhao, J.: Robust capacity expansion of network flows. Networks 50, 136–145 (2007)

  25. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization—Algorithms and Complexity. Dover Publications, Mineola (1998)

  26. Poss, M.: A comparison of routing sets for robust network design. Optim. Lett. 8, 1619–1635 (2014)

  27. Righetto, G.M., Morabito, R., Alem, D.: A robust optimization approach for cash flow management in stationery companies. Comput. Ind. Eng. 99, 137–152 (2016)

  28. Roy, B.: Robustness in operational research and decision aiding: a multi-faceted issue. Eur. J. Oper. Res. 200, 629–638 (2010)

  29. Rui, M., Jinfu, Z.: Robust discrete optimization for the minimum cost flow problem. In: Wang, C., Ye, Z. (eds.) Proceedings of the International Workshop on Intelligent Systems and Applications—ISA 2009, Wuhan, China, 23–24 May 2009. IEEE, Piscataway NJ (2009)

  30. Talbi, E.G.: Metaheuristics—From Design to Implementation. Wiley, Hoboken (2009)

  31. Troelsen, A., Japikse, P.: C# 6.0 and the.NET 4.6 Framework, 7th edn. Apress, New York (2016)

  32. Wang, L., Song, J., Shi, L.: Dynamic emergency logistics planning: models and heuristic algorithm. Optim. Lett. 9, 1533–1552 (2015)

Download references

Acknowledgements

This work has been fully supported by Croatian Science Foundation under the project IP-2018-01-5591. The authors would like to thank the reviewers for their useful remarks on an earlier version of the paper.

Author information

Correspondence to Robert Manger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Špoljarec, M., Manger, R. Heuristic solutions to robust variants of the minimum-cost integer flow problem. J Heuristics (2020). https://doi.org/10.1007/s10732-020-09441-1

Download citation

Keywords

  • Robust optimization
  • Network flow
  • Minimum-cost flow
  • Heuristic
  • Local search
  • Evolutionary computing