Scheduling hybrid flow shops with time windows
- 72 Downloads
Abstract
Hybrid flow shops can be encountered in various industrial settings. In this paper we develop methods for scheduling hybrid flow shops with hard time windows. Specifically, we study a two-stage hybrid flow shop scheduling problem with time windows to minimize the total weighted completion times. Each stage consists of one or more identical parallel machines, and each job visits two processing stages in series. Finding a feasible schedule with hard time windows is a challenging task in this setting, because it is NP-complete in the strong sense even for a single machine in a single stage. We propose two matheuristics to find an initial feasible solution by local branching. We also develop two schedule improvement procedures, one based on stage-by-stage decomposition, and one using adapted local branching. The performance of our methods is validated via extensive computational experiments.
Keywords
Hybrid flow shop Scheduling Time windows Matheuristic Local branchingAbbrevations
- AL
Adapted local branching
- ALP
Job ordering in average starting time of the linear relaxation
- ED
Earliest-deadline-first rule
- FSSA
Feasible schedule search by artificial variables
- ISR
Infeasible schedule repair
- JFA
Job window heuristic and adapted local branching
- JFS
Job window heuristic and stage-by-stage decomposition
- JWH
Job window heuristic
- RP
Random priority rule
- SD
Stage-by-stage decomposition
- \(\triangle _r^{AL}\)
Radius decrement in AL
- \(\triangle _r^{ISR}\)
Radius increment in ISR
- \(\triangle _t\)
Time increment in AL
- \(G_{node}\)
threshold on the gap in a node in AL
- \(K^{AL}\)
Predetermined number of rounds for AL
- \(T_{ini}\)
Initialization time
- \(T_{B}\)
Time limit for bottleneck stage in SD
- \(T_{N}\)
Time limit for non-bottleneck stage in SD
- \(T^{AL}\)
Time limit for AL
- \(T_{node}\)
Time limit for each node in AL
Notes
References
- Allaoui, H., Artiba, A.: Scheduling two-stage hybrid flow shop with availability constraints. Comput. Oper. Res. 33(5), 1399–1419 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- Azizoglu, M., Cakmak, E., Kondakci, S.: A flexible flowshop problem with total flow time minimization. Eur. J. Oper. Res. 132(3), 528–538 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- Balas, E., Lancia, G., Serafini, P., Vazacopoulos, A.: Job shop scheduling with deadlines. J. Comb. Optim. 1(4), 329–353 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- Balas, E., Simonetti, N., Vazacopoulos, A.: Job shop scheduling with setup times, deadlines and precedence constraints. J. Sched. 11(4), 253–262 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- Bang, J.Y., Kim, Y.D.: Scheduling algorithms for a semiconductor probing facility. Comput. Oper. Res. 38(3), 666–673 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- Baumann, P., Trautmann, N.: A continuous-time MILP model for short-term scheduling of make-and-pack production processes. Int. J. Prod. Res. 51(6), 1707–1727 (2013)CrossRefGoogle Scholar
- Belaid, R., T’kindt, V., Esswein, C.: Scheduling batches in flowshop with limited buffers in the shampoo industry. Eur. J. Oper. Res. 223(2), 560–572 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- Berghman, L., Leus, R.: Practical solutions for a dock assignment problem with trailer transportation. Eur. J. Oper. Res. 246(3), 787–799 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- Berghman, L., Leus, R., Spieksma, F.C.R.: Optimal solutions for a dock assignment problem with trailer transportation. Ann. Oper. Res. 213(1), 1–23 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- Brah, S.A., Hunsucker, J.L.: Branch and bound algorithm for the flow shop with multiple processors. Eur. J. Oper. Res. 51(1), 88–99 (1991)zbMATHCrossRefGoogle Scholar
- Chamnanlor, C., Sethanan, K., Chien, C.F., Gen, M.: Re-entrant flow shop scheduling problem with time windows using hybrid genetic algorithm based on auto-tuning strategy. Int. J. Prod. Res. 52(9), 2612–2629 (2014)CrossRefGoogle Scholar
- Chamnanlor, C., Sethanan, K., Gen, M., Chien, C.-F.: Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. J. Intell. Manuf. 28(8), 1915–1931 (2017)CrossRefGoogle Scholar
- Chen, Z.L., Vairaktarakis, G.L.: Integrated scheduling of production and distribution operations. Manage. Sci. 51(4), 614–628 (2005)zbMATHCrossRefGoogle Scholar
- Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project scheduling with resource constraints: a branch and bound approach. Eur. J. Oper. Res. 29(3), 262–273 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
- Davari, M., Demeulemeester, E., Leus, R., Talla Nobibon, F.: Exact algorithms for single-machine scheduling with time windows and precedence constraints. J. Sched. 19(3), 309–334 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- Debels, D., Vanhoucke, M.: A decomposition-based genetic algorithm for the resource-constrained project-scheduling problem. Oper. Res. 55(3), 457–469 (2007)zbMATHCrossRefGoogle Scholar
- Della Croce, F., Grosso, A., Salassa, F.: A matheuristic approach for the two-machine total completion time flow shop problem. Ann. Oper. Res. 213(1), 67–78 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- Fischetti, M., Lodi, A.: Repairing MIP infeasibility through local branching. Comput. Oper. Res. 35(5), 1436–1445 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- Garcia, J.M., Lozano, S.: Production and delivery scheduling problem with time windows. Comput. Indu. Eng. 48(4), 733–742 (2005)CrossRefGoogle Scholar
- Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
- Gicquel, C., Hege, L., Minoux, M., Van Canneyt, W.: A discrete time exact solution approach for a complex hybrid flow-shop scheduling problem with limited-wait constraints. Comput. Oper. Res. 39(3), 629–636 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- Grabowski, J., Pempera, J.: Sequencing of jobs in some production system. Eur. J. Oper. Res. 125(3), 535–550 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
- Guirchoun, S., Martineau, P., Billaut, J.C.: Total completion time minimization in a computer system with a server and two parallel processors. Comput. Oper. Res. 32(3), 599–611 (2005)zbMATHCrossRefGoogle Scholar
- Hadda, H., Dridi, N., Hajri-Gabouj, S.: Exact resolution of the two-stage hybrid flow shop with dedicated machines. Optim. Lett. 8(8), 2329–2339 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- Hall, N.G., Potts, C.N., Sriskandarajah, C.: Parallel machine scheduling with a common server. Discrete Appl. Math. 102(3), 223–243 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- Ham, A., Fowler, J.W., Cakici, E.: Constraint programming approach for scheduling jobs with release times, non-identical sizes, and incompatible families on parallel batching machines. IEEE Trans. Semicond. Manuf. 30(4), 500–507 (2017)CrossRefGoogle Scholar
- Haouari, M., Hidri, L., Gharbi, A.: Optimal scheduling of a two-stage hybrid flow shop. Math. Methods Oper. Res. 64(1), 107–124 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- Huang, R.-H., Yang, C.-L.: Ant colony system for job shop scheduling with time windows. Int. J. Adv. Manuf. Technol. 39(1–2), 151–157 (2008)CrossRefGoogle Scholar
- Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS J. Comput. 13(4), 258–276 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- Jula, P., Kones, I.: Continuous-time algorithms for scheduling a single machine with sequence-dependent setup times and time window constraints in coordinated chains. Int. J. Prod. Res. 51(12), 3654–3670 (2013)CrossRefGoogle Scholar
- Kaveshgar, N., Huynh, N.: Integrated quay crane and yard truck scheduling for unloading inbound containers. Int. J. Prod. Econ. 159, 168–177 (2015)CrossRefGoogle Scholar
- Klemmt A, Mönch L (2012) Scheduling jobs with time constraints between consecutive process steps in semiconductor manufacturing. In: Simulation conference (WSC), proceedings of the 2012 Winter, pp 1–10. IEEEGoogle Scholar
- Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur. J. Oper. Res. 90(2), 320–333 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- Komaki, G., Teymourian, E., Kayvanfar, V.: Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems. Int. J. Prod. Res. 54(4), 963–983 (2016)CrossRefGoogle Scholar
- Lee, G.C., Kim, Y.D.: A branch-and-bound algorithm for a two-stage hybrid flowshop scheduling problem minimizing total tardiness. Int. J. Prod. Res. 42(22), 4731–4743 (2004)zbMATHCrossRefGoogle Scholar
- Lei, D., Guo, X.: Hybrid flow shop scheduling with not-all-machines options via local search with controlled deterioration. Comput. Oper. Res. 65, 76–82 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- Lenstra, J.K., Rinnooy Kan, A., Brucker, P.: Complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
- Liu, M., Yang, X., Zhang, J., Chu, C.: Scheduling a tempered glass manufacturing system: a three-stage hybrid flow shop model. Int. J. Prod. Res. 55(20), 6084–6107 (2017)CrossRefGoogle Scholar
- Néron, E., Baptiste, P., Gupta, J.N.: Solving hybrid flow shop problem using energetic reasoning and global operations. Omega 29(6), 501–511 (2001)CrossRefGoogle Scholar
- Pan, Q.K.: An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. Eur. J. Oper. Res. 250(3), 702–714 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- Pan, Q.K., Ruiz, R., Alfaro-Fernandez, P.: Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Comput. Oper. Res. 80, 50–60 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- Pan, Y., Shi, L.: Dual constrained single machine sequencing to minimize total weighted completion time. IEEE Trans. Autom. Sci. Eng. 2(4), 344–357 (2005)CrossRefGoogle Scholar
- Panwalkar, S., Dudek, R., Smith, M.: Sequencing research and the industrial scheduling problem. In: Symposium on the theory of scheduling and its applications, Vol 86, pp 29–38. Springer, Berlin (1973)Google Scholar
- Pinedo, M.L.: Scheduling: theory, algorithms, and systems. Springer, Berlin (2016)zbMATHCrossRefGoogle Scholar
- Quadt, D., Kuhn, H.: A taxonomy of flexible flow line scheduling procedures. Eur. J. Oper. Res. 178(3), 686–698 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- Ribas, I., Leisten, R., Framinan, J.M.: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput. Oper. Res. 37(8), 1439–1454 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- Ruiz, R., Vazquez-Rodriguez, J.A.: The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 205(1), 1–18 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- Sawik, T.: Mixed integer programming for scheduling surface mount technology lines. Int. J. Prod. Res. 39(14), 3219–3235 (2001)zbMATHCrossRefGoogle Scholar
- Schulze, M., Rieck, J., Seifi, C., Zimmermann, J.: Machine scheduling in underground mining: an application in the potash industry. OR Spectr. 38(2), 365–403 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- Shahvari, O., Logendran, R.: A comparison of two stage-based hybrid algorithms for a batch scheduling problem in hybrid flow shop with learning effect. Int. J. Prod. Econ. 195, 227–248 (2018)CrossRefGoogle Scholar
- Tan, Y., Mönch, L., Fowler, J.W.: A hybrid scheduling approach for a two-stage flexible flow shop with batch processing machines. J. Sched. 21(2), 209–226 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- Tang, L., Wang, X.: An improved particle swarm optimization algorithm for the hybrid flowshop scheduling to minimize total weighted completion time in process industry. IEEE Trans. Control Syst. Technol. 18(6), 1303–1314 (2010)Google Scholar
- Tang, L., Wang, G., Liu, J.: A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel industry. Comput. Oper. Res. 34(10), 3001–3015 (2007)zbMATHCrossRefGoogle Scholar
- T’kindt, V., Monmarché, N., Tercinet, F., Laügt, D.: An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. Eur. J. Oper. Res. 142(2), 250–257 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- Wang, S., Liu, M., Chu, C.: A branch-and-bound algorithm for two-stage no-wait hybrid flow-shop scheduling. Int. J. Prod. Res. 53(4), 1143–1167 (2015)CrossRefGoogle Scholar