Advertisement

A bi-objective study of the minimum latency problem

  • N. A. Arellano-ArriagaEmail author
  • J. Molina
  • S. E. Schaeffer
  • A. M. Álvarez-Socarrás
  • I. A. Martínez-Salazar
Article

Abstract

We study a bi-objective problem called the Minimum Latency-Distance Problem (mldp) that aims to minimise travel time and latency of a single-vehicle tour designed to serve a set of client requests. This tour is a Hamiltonian cycle for which we aim to simultaneously minimise the total travel time of the vehicle and the total waiting time (i.e., latency) of the clients along the tour. This problem is relevant in contexts where both client satisfaction and company profit are prioritise. We propose two heuristic methods for approximating Pareto fronts for mldp: SMSA that is based on a classic multi-objective algorithm and EiLS that is based on a novel evolutionary algorithm with intelligent local search. We report computational experiments on a set of artificially generated problem instances using an exact method and the two proposed heuristics, comparing the obtained fronts in terms of various quality metrics.

Keywords

Combinatorial optimisation Distance Genetic algorithms Latency Meta-heuristics Multi-objective optimisation Multiple-objective programming 

Notes

Acknowledgements

The first author thanks CONACyT (the Mexican National Council for Science and Technology) which supported her studies at UANL under the Scholarship Number 446316, as well as the AUIP (the Asociación Universitaria Iberoamericana de Postgrado) for the scholarship granted to conclude her studies in the University of Malaga. The second author thanks the research project CSO2016-75898-P from the Spanish of Ministry of Science and Innovation, which supports his research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Afrati, F., Cosmadakis, S., Papadimitriou, C.H., Papageorgiou, G., Papakostantinou, N.: The complexity of the travelling repairman problem. RAIRO Theoret. Inform. Appl. 20(1), 79–87 (1986).  https://doi.org/10.1051/ita/1986200100791 MathSciNetzbMATHGoogle Scholar
  2. Angel-Bello, F., Álvarez-Socarrás, A.M., García, I.: Two improved formulations for the minimum latency problem. Appl. Math. Model. 37(4), 2257–2266 (2013a).  https://doi.org/10.1016/j.apm.2012.05.026 MathSciNetzbMATHGoogle Scholar
  3. Angel-Bello, F., Martínez-Salazar, I., Álvarez-Socarrás, A.M.: Minimizing waiting times in a route design problem with multiple use of a single vehicle. Electron. Notes Discrete Math. 41, 269–276 (2013b).  https://doi.org/10.1016/j.endm.2013.05.102 Google Scholar
  4. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  5. Arellano-Arriaga, N., Schaeffer, S.E.: MLDP instance set. Figshare (2017).  https://doi.org/10.6084/m9.figshare.5584816.v1
  6. Arellano-Arriaga, N.A., Álvarez-Socarrás, A.M., Martínez-Salazar, I.A.: A sustainable bi-objective approach for the minimum latency problem. In: Alba E, Chicano F, Luque G (eds) Smart Cities, Lecture Notes in Computer Science. Springer, Cham, vol. 10268, pp. 11–19 (2017).  https://doi.org/10.1007/978-3-319-59513-9_2
  7. Arellano-Arriaga, N.A., Molina, J., Schaeffer, S.E., Álvarez-Socarrás, A.M., Martínez-Salazar, I.A.: Complexity of MLDP. Tech. Rep. (2018) arXiv:1809.02656 [cs.CC]
  8. Bair, W., Cavanaugh, J.R., Movshon, J.A.: Time course and time–distance relationships for surround suppression in macaque V1 neurons. J. Neurosci. 23(20), 7690–7701 (2003).  https://doi.org/10.1523/JNEUROSCI.23-20-07690.2003 Google Scholar
  9. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006).  https://doi.org/10.1016/j.omega.2004.10.004 MathSciNetGoogle Scholar
  10. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Leighton FT, Goodrich M (eds) Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing, ACM, New York, pp. 163–171 (1994).  https://doi.org/10.1145/195058.195125
  11. Borah, S.J., Dhurandher, S.K., Woungang, I., Kumar, V., Barolli, L.: A multi-objectives based technique for optimized routing in opportunistic networks. J. Ambient Intell. Humaniz. Comput. 1, 1–12 (2017).  https://doi.org/10.1007/s12652-017-0462-z Google Scholar
  12. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: Proceedings of the Fourty-Fourth Annual IEEE Symposium on Foundations of Computer Science, IEEE, Cambridge, pp 36–45 (2003).  https://doi.org/10.1109/SFCS.2003.1238179
  13. Chvátal, V., Cook, W., Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman problem. In: Júnger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art. Springer, Berlin, Heidelberg, chap 1, pp 7–28 (2010)Google Scholar
  14. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958).  https://doi.org/10.1287/opre.6.6.791 MathSciNetGoogle Scholar
  15. Crowcroft, J., Segal, M., Levin, L.: Improved structures for data collection in static and mobile wireless sensor networks. J. Heuristics 21(2), 233–256 (2015).  https://doi.org/10.1007/s10732-014-9250-5 Google Scholar
  16. Darcis, G., Bouchat, S., Kula, A., Van Driessche, B., Delacourt, N., Vanhulle, C., Avettand-Fenoel, V., De Wit, S., Rohr, O., Rouzioux, C., et al.: Reactivation capacity by latency-reversing agents ex vivo correlates with the size of the HIV-1 reservoir. AIDS 31(2), 181–189 (2017).  https://doi.org/10.1097/QAD.0000000000001290 Google Scholar
  17. Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, vol. 1, pp. 162–164 (1985)Google Scholar
  18. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2000).  https://doi.org/10.1109/4235.996017 Google Scholar
  19. Depuy, G.W., Savelsbergh, M.W., Ammons, J.C., McGinnis, L.F.: An integer programming heuristic for component allocation in printed circuit card assembly systems. J. Heuristics 7(4), 351–369 (2001).  https://doi.org/10.1023/A:1011388227723 Google Scholar
  20. Dimitrijevic, V., Saric, Z.: An efficient transformation of the generalized traveling salesman problem into the traveling salesman problem on digraphs. Inf. Sci. 102(1), 105–110 (1997).  https://doi.org/10.1016/S0020-0255(96)00084-9 MathSciNetzbMATHGoogle Scholar
  21. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997).  https://doi.org/10.1109/4235.585892 Google Scholar
  22. Ehrgott, M.: Multicriteria Optimization. Springer, Secaucus (2005)zbMATHGoogle Scholar
  23. Ferrer, J.M., Ortuño, M.T., Tirado, G.: A GRASP metaheuristic for humanitarian aid distribution. J. Heuristics 22(1), 55–87 (2016).  https://doi.org/10.1007/s10732-015-9302-5 Google Scholar
  24. Fischer, W., Wictorin, K., Björklund, A., Williams, L., Varon, S., Gage, F., et al.: Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329(6134), 65–68 (1987).  https://doi.org/10.1038/329065a0 Google Scholar
  25. García, A., Jodrá, P., Tejel, J.: A note on the traveling repairman problem. Networks 40(1), 27–31 (2002).  https://doi.org/10.1002/net.10031 MathSciNetzbMATHGoogle Scholar
  26. Gouveia, L., Voß, S.: A classification of formulations for the time-dependent traveling salesman problem. Eur. J. Oper. Res. 83(1), 69–82 (1995).  https://doi.org/10.1016/0377-2217(93)E0238-S zbMATHGoogle Scholar
  27. Grout, V., McGinn, J., Davies, J.: Real-time optimisation of access control lists for efficient internet packet filtering. J. Heuristics 13(5), 435–454 (2007).  https://doi.org/10.1007/s10732-007-9019-1 Google Scholar
  28. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: estimating latency between arbitrary internet end hosts. In: Proceedings of the Second ACM SIGCOMM Workshop on Internet Measurement. ACM, New York, pp 5–18 (2002).  https://doi.org/10.1145/637201.637203
  29. Gutin, G., Punnen, A.: The Traveling Salesman Problem and Its Variations. Combinatorial Optimization. Springer, New York (2006)zbMATHGoogle Scholar
  30. He, D., Mujica, G., Portilla, J., Riesgo, T.: Modelling and planning reliable wireless sensor networks based on multi-objective optimization genetic algorithm with changeable length. J. Heuristics 21(2), 257–300 (2015).  https://doi.org/10.1007/s10732-014-9261-2 Google Scholar
  31. Hoffman, K.L., Padberg, M., Rinaldi, G.: Traveling salesman problem. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Science, pp. 1573–1578. Springer, Boston (2013)Google Scholar
  32. Joo Ghee, L., Junaid, Q., Chun Tung, C., Archan, M.: Minimum latency broadcasting in multiradio, multichannel, multirate wireless meshes. IEEE Trans. Mob. Comput. 8(11), 1510–1523 (2009).  https://doi.org/10.1109/TMC.2009.68 Google Scholar
  33. Kao, Y.H., Krishnamachari, B., Ra, M.R., Bai, F.: Hermes: latency optimal task assignment for resource-constrained mobile computing. IEEE Trans. Mob. Comput. 16(11), 3056–3069 (2017).  https://doi.org/10.1109/TMC.2017.2679712 Google Scholar
  34. Kim, S., Na, J.H.: Improving latency using codes in mission-critical communication. In: Proceedings IEEE 19th International Conference on Advanced Communication Technology, IEEE, Piscataway, pp 730–734 (2017).  https://doi.org/10.23919/ICACT.2017.7890189
  35. Kovács, G., Spens, K.: Identifying challenges in humanitarian logistics. Int. J. Phys. Distrib. Logist. Manag. 39(6), 506–528 (2009).  https://doi.org/10.1108/09600030910985848 Google Scholar
  36. Kovács, G., Spens, K.M.: Humanitarian logistics in disaster relief operations. Int. J. Phys. Distrib. Logist. Manag. 37(2), 99–114 (2007).  https://doi.org/10.1108/09600030710734820 Google Scholar
  37. Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992).  https://doi.org/10.1016/0377-2217(92)90138-Y MathSciNetzbMATHGoogle Scholar
  38. Lichtsteiner, P., Posch, C., Delbruck, T.: A \(128 \times 128\) 120db \(15\mu \text{ s }\) latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43(2), 566–576 (2008).  https://doi.org/10.1109/JSSC.2007.914337 Google Scholar
  39. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973).  https://doi.org/10.1287/opre.21.2.498 MathSciNetzbMATHGoogle Scholar
  40. Littner, M., Kushida, C., Wise, M., Davila, D., Morgenthaler, T., Lee-Chiong, T., Hirshkowitz, M., Daniel, L., Bailey, D., Berry, R., Kapen, S., Kramer, M.: Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test. J. Clin. Sleep Med. 28(1), 113–121 (2005).  https://doi.org/10.1378/chest.08-0822 Google Scholar
  41. Lu, G., Krishnamachari, B., Raghavendra, C.S.: An adaptive energy-efficient and low-latency MAC for tree-based data gathering in sensor networks. Wirel. Commun. Mob. Comput. 7(7), 863–875 (2007).  https://doi.org/10.1002/wcm.503 Google Scholar
  42. Lucena, A.: Time-dependent traveling salesman problem—the deliveryman case. Networks 20(6), 753–763 (1990).  https://doi.org/10.1002/net.3230200605 MathSciNetzbMATHGoogle Scholar
  43. Madhyastha, H.V., Anderson, T., Krishnamurthy, A., Spring, N., Venkataramani, A.: A structural approach to latency prediction. In: Proceedings of the Sixth ACM SIGCOMM Conference on Internet Measurement, ACM, New York, pp. 99–104 (2006).  https://doi.org/10.1145/1177080.1177092
  44. Mavrotas, G.: Effective implementation of the \(\varepsilon \)-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213(2), 455–465 (2009).  https://doi.org/10.1016/j.amc.2009.03.037 MathSciNetzbMATHGoogle Scholar
  45. Mavrotas, G., Florios, K.: An improved version of the augmented \(\varepsilon \)-constraint method (augmecon2) for finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput. 219(18), 9652–9669 (2013).  https://doi.org/10.1016/j.amc.2013.03.002 MathSciNetzbMATHGoogle Scholar
  46. Méndez-Díaz, I., Zabala, P., Lucena, A.: A new formulation for the traveling deliveryman problem. Discrete Appl. Math. 156(17), 3223–3237 (2008).  https://doi.org/10.1016/j.dam.2008.05.009 MathSciNetzbMATHGoogle Scholar
  47. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM 7(4), 326–329 (1960).  https://doi.org/10.1145/321043.321046 MathSciNetzbMATHGoogle Scholar
  48. Molina, J., Laguna, M., Marti, R., Caballero, R.: SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization. INFORMS J. Comput. 19(1), 91–100 (2007).  https://doi.org/10.1287/ijoc.1050.0149 MathSciNetzbMATHGoogle Scholar
  49. Molina, J., López-Sánchez, A., Hernández-Díaz, A., Martínez-Salazar, I.: A multi-start algorithm with intelligent neighborhood selection for solving multi-objective humanitarian vehicle routing problems. J. Heuristics 24(2), 111–133 (2018).  https://doi.org/10.1007/s10732-017-9360-y Google Scholar
  50. Nagarajan, V., Ravi, R.: The directed minimum latency problem. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, Lecture Notes in Computer Science. Springer, Berlin, vol. 5171, pp. 193–206 (2008).  https://doi.org/10.1007/978-3-540-85363-3_16
  51. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the traveling salesman problem. In: Proceedings of the Second International Conference on Genetic Algorithms and Their Application. L. Erlbaum Associates Inc., Hillsdale, pp. 224–230 (1987)Google Scholar
  52. Orman, A., Williams, H.: A survey of different integer programming formulations of the travelling salesman problem. In: Kontoghiorghes, E.J., Gatu, C. (eds.) Optimisation, Econometric and Financial Analysis. Springer, Berlin, chap 5, pp. 91–104 (2007)Google Scholar
  53. Paniagua-Soto, J., Ruiz-García, J., Iznaola-Muñoz, M., Ruiz-Serrano, L.: Multiple sleep latency test in patients with suspected narcolepsy. Review of 45 cases. J. Clin. Sleep Med. 14(1), 272–273 (2013).  https://doi.org/10.1016/j.sleep.2013.11.665 Google Scholar
  54. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Boston (1994)zbMATHGoogle Scholar
  55. Patterson, D.A.: Latency lags bandwith. Commun. ACM 47(10), 71–75 (2004).  https://doi.org/10.1145/1022594.1022603 Google Scholar
  56. Picard, J.C., Queyranne, M.: The time-dependent traveling salesman problem and its application to the tardiness problem in one-machine scheduling. Oper. Res. 26(1), 86–110 (1978).  https://doi.org/10.1287/opre.26.1.86 MathSciNetzbMATHGoogle Scholar
  57. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Comput. Oper. Res. 31(12), 1985–2002 (2004).  https://doi.org/10.1016/s0305-0548(03)00158-8 MathSciNetzbMATHGoogle Scholar
  58. Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: Approximate algorithms for the traveling salesperson problem. In: Proceedings of the Fifteenth Annual Symposium on Switching and Automata Theory, General Electric Corporate Research and Development, Schenectady, New York, pp. 33–42 (1974).  https://doi.org/10.1109/SWAT.1974.4
  59. Salami, M., Itami, C., Tsumoto, T., Kimura, F.: Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proc. Natl. Acad. Sci. 100(10), 6174–6179 (2003).  https://doi.org/10.1073/pnas.0937380100 Google Scholar
  60. Sarddar, D., Banerjee, J., Jana, T., Saha, S.K., Biswas, U., Naskar, M.: Minimization of handoff latency by angular displacement method using GPS based map. Int. J. Comput. Appl. 7(3), 29–37 (2010).  https://doi.org/10.5120/3039-4122 Google Scholar
  61. Sarddar, D., Chatterjee, S., Jana, R., Babu, S.S., Khan, H.N., Biswas, U., Naskar, M.: Minimization of handoff latency by distance measurement method. Int. J. Comput. Appl. 8(2), 283–289 (2011).  https://doi.org/10.1007/s11227-008-0175-3 Google Scholar
  62. Sarubbi, J., Luna, H., Miranda, G.: Minimum latency problem as a shortest path problem with side constraints. In: Proceedings of the Fourteenth Ibero-American Congress on Operations Research, Cartagena (2008)Google Scholar
  63. Schurgers, C., Tsiatsis, V., Ganeriwal, S., Srivastava, M.: Optimizing sensor networks in the energy-latency-density design space. IEEE Trans. Mob. Comput. 1(1), 70–80 (2002).  https://doi.org/10.1109/tmc.2002.1011060 Google Scholar
  64. Sengupta, R.: Other decision-making methods. In: Sengupta, R., Gupta, A., Dutta, J. (eds.) Decision Sciences: Theory and Practice, pp. 220–257. CRC Press, Boca Raton (2016). chap 5Google Scholar
  65. Squires, N.K., Squires, K.C., Hillyard, S.A.: Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol 38(4), 387–401 (1975).  https://doi.org/10.1016/0013-4694(75)90263-1 Google Scholar
  66. Stephenson, M.O.: The theory and practice of international humanitarian relief coordination. In: Koops, J.A., Biermann, R. (eds.) Palgrave Handbook of Inter-organizational Relations in World Politics, pp. 485–502. Palgrave Macmillan, London (2017)Google Scholar
  67. Sternberg, S., Monsell, S., Knoll, R.L., Wright, C.E.: The latency and duration of rapid movement sequences: comparisons of speech and typewriting. In: Stelmach, G.E. (ed.) Information Processing in Motor Control and Learning, pp. 117–152. Elsevier Academic Press, New York (1978). chap 6Google Scholar
  68. Tomasini, R., Van Wassenhove, L., Van Wassenhove, L.: Humanitarian Logistics. Palgrave Macmillan, London (2009)zbMATHGoogle Scholar
  69. Vargas, L., Jozefowiez, N., Ngueveu, S.U.: A dynamic programming operator for tour location problems applied to the covering tour problem. J. Heuristics 23(1), 53–80 (2017).  https://doi.org/10.1007/s10732-017-9324-2 Google Scholar
  70. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, ETH, Zurich (1999)Google Scholar
  71. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999).  https://doi.org/10.1109/4235.797969 Google Scholar
  72. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. Technical Report TIK-Report 103, ETH Zurich, Zurich (2001).  https://doi.org/10.3929/ethz-a-004284029

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PISIS, FIMEUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Programa de Doctorado en Economía y EmpresaUniversidad de MálagaMálagaSpain
  3. 3.Departamento de Economía Aplicada (Matemáticas)Universidad de MálagaMálagaSpain

Personalised recommendations